当前位置:网站首页>(论文翻译]未配对Image-To-Image翻译使用Cycle-Consistent敌对的网络
(论文翻译]未配对Image-To-Image翻译使用Cycle-Consistent敌对的网络
2022-07-30 13:50:00 【xiongxyowo】
Only the method part is translated
III. Formulation
Our target is given training samples { x i } i = 1 N ∈ X \left\{x_{i}\right\}_{i=1}^{N} \in X { xi}i=1N∈X和{ { x j } j = 1 M ∈ X \left\{x_{j}\right\}_{j=1}^{M} \in X { xj}j=1M∈XLearn between the two domains X X X和 Y Y Y的映射函数.如图3(a)所示,我们的模型包括两个映射 G : X → Y G: X→Y G:X→Y和 F : Y → X F: Y→X F:Y→X.此外,We introduce two adversarial discriminators D X D_X DX和 D Y D_Y DY,其中 D X D_X DX旨在区分图像 { x } \{x\} { x}and translated images { F ( y ) } \{F(y)\} { F(y)};同样, D Y D_Y DY旨在区分 { y } \{y\} { y}和 { G ( x ) } \{G(x)\} { G(x)}.Our goals consist of two kinds:对抗性损失(Adversarial Loss),Used to match the resulting image distribution to the data distribution of the target domain;以及循环一致性损失(Cycle Consistency Loss
),to prevent learned mappings G G G和 F F F相互矛盾.
Adversarial Loss
We apply adversarial loss to two mapping functions.对于映射函数 G : X → Y G:X→Y G:X→Yand its discriminator D Y D_Y DY,We express the goal as : L GAN ( G , D Y , X , Y ) = E y ∼ p data ( y ) [ log D Y ( y ) ] + E x ∼ p data ( x ) [ log ( 1 − D Y ( G ( x ) ) ] \mathcal{L}_{\text{GAN}}(G,\ D_{Y},\ X,\ Y) = \mathbb{E}_{y\sim p_{\text{data}}(y)}[\log D_{Y}(y)]\\ +\mathbb{E}_{x\sim p_{\text{data}}(x)}[\log(1- D_{Y}(G(x))] LGAN(G, DY, X, Y)=Ey∼pdata(y)[logDY(y)]+Ex∼pdata(x)[log(1−DY(G(x))] 其中 G G GTrying to generate with fields Y Y YThe image is similar to the image G ( x ) G(x) G(x),而 D Y D_Y DYAims to distinguish translated samples G ( x ) G(x) G(x)and real samples Y Y Y.我们为映射函数 F : Y → X F:Y→X F:Y→Xand its discriminator D X D_X DX也引入了类似的对抗性损失:即 L G A N ( F , D X , Y , X ) L_{GAN}(F, D_X, Y, X) LGAN(F,DX,Y,X).
Cycle Consistency Loss
理论上,对抗性训练可以学习映射 G G G和 F F F,Generated with the target domain Y Y Y和 X X Xdistribute the same output(严格来说,这需要G和F是随机的函数).然而,with sufficient capacity,The network can map the same set of input images to any random arrangement of images in the target domain,Any of these learned mappings can lead to an output distribution that matches the target distribution.为了进一步减少可能的映射函数的空间,We believe that the learned mapping function should be cycle-consistent:如图3b所示,对于来自域 X X X的每个图像 x x x,The image translation loop should be able to x x x带回原始图像,即 x → G ( x ) → F ( G ( x ) ) ≈ x x→G(x)→F(G(x))≈x x→G(x)→F(G(x))≈x.We call this forward cycle consistency.同样,如图3c所示,对于来自域 Y Y Y的每个图像 y y y, G G G和 F F FBackward circular consistency should also be satisfied: y → F ( y ) → G ( F ( y ) ) ≈ y y→F(y)→G(F(y))≈y y→F(y)→G(F(y))≈y.We can incentivize this behavior with a cycle consistency loss. L cyc ( G , F ) = E x ∼ p data ( x ) [ ∥ F ( G ( x ) ) − x ∥ 1 ] + E y ∼ p data ( ( y ) [ ∥ G ( F ( y ) ) − y ∥ 1 ] . \mathcal{L}_{\text{cyc}}(G,\ F)=\mathbb{E}_{x\sim p_{\text{data}}(x)}[\Vert F(G(x))-x \Vert_{1}]\\ +\mathbb{E}_{y\sim p_{\text{data}}((y)}[\Vert G(F(y))-y \Vert_{1}]. Lcyc(G, F)=Ex∼pdata(x)[∥F(G(x))−x∥1]+Ey∼pdata((y)[∥G(F(y))−y∥1]. 在初步实验中,我们还尝试用 F ( G ( x ) ) F(G(x)) F(G(x))和 x x x之间以及 G ( F ( y ) ) G(F(y)) G(F(y))和 y y yThe adversarial loss between is replaced in this lossL1准则,但没有观察到性能的改善.Behavior caused by cycle consistency loss can be found in arXivversion observed.
Full Objective
Our overall objective function is : L ( G , F , D X , D Y ) = L GAN ( G , D Y , X , Y ) + L GAN ( F , D X , Y , X ) + λ L cyc ( G , F ) \mathcal{L}(G,\ F,\ D_{X},\ D_{Y})=\mathcal{L}_{\text{GAN}}(G,\ D_{Y},\ X,\ Y)\\ +\mathcal{L}_{\text{GAN}}(F,\ D_{X},\ Y,\ X)\\ +\lambda \mathcal{L}_{\text{cyc}}(G,\ F) L(G, F, DX, DY)=LGAN(G, DY, X, Y)+LGAN(F, DX, Y, X)+λLcyc(G, F) 其中 λ \lambda λ控制两个目标的相对重要性.我们的目标是解决: G ∗ , F ∗ = arg min G , F max D x , D Y L ( G , F , D X , D Y ) G^{\ast},\ F^{\ast}= \arg\min_{G,\ F}\ \max_{D_{x},\ D_{Y}}\mathcal{L}(G,\ F,\ D_{X},\ D_{Y}) G∗, F∗=argG, Fmin Dx, DYmaxL(G, F, DX, DY) 请注意,Our model can be seen as training two"自动编码器":We will use an autoencoder F ∘ G : X → X F∘G:X→X F∘G:X→X与另一个 G ∘ F : Y → Y G∘F:Y→Y G∘F:Y→Y共同学习.然而,这些自动编码器都有特殊的内部结构:They map images to themselves through an intermediate representation,This intermediate representation is the translation of the image in another domain.Such a setup can also be seen as"对抗性自动编码器"的一个特例,It uses an adversarial loss to train the bottleneck layer of the autoencoder to match an arbitrary target distribution.在我们的例子中, X → X X→X X→XThe target distribution of the autoencoder is the domain Y Y Y的分布.在第5.1.3节中,We compare our method with full target subtraction,and shown by experience,These two goals play a key role in obtaining high-quality results.
边栏推荐
- 创意loadingjs特效小点跳跃动画
- MQTT网关读取西门子PLC数据传输到阿里云平台案例教程
- Self-tuning PID self-tuning control 】 【
- 二手手机销量突破3亿部,与降价的iPhone夹击国产手机
- R语言时间序列数据算术运算:使用log函数将时间序列数据的数值对数化(平方、开平方、指数化等函数类似使用)
- [ARC092B] Two Sequences
- CF603E Pastoral Oddities
- LeetCode二叉树系列——116.填充每个节点的下一个右侧指针
- R语言ggstatsplot包grouped_ggwithinstats函数可视化分组小提琴图、并添加假设检验结果(包含样本数、统计量、效应大小及其置信区间、显著性、组间两两比较、贝叶斯假设)
- PyQt5快速开发与实战 8.6 设置样式
猜你喜欢

二手手机销量突破3亿部,与降价的iPhone夹击国产手机

No-code development platform application visible permission setting introductory tutorial

No-code development platform all application settings introductory tutorial

Logic Vulnerability----Permission Vulnerability

shell脚本流程控制语句

元宇宙的六大支撑技术

What are the hard-core upgrades and applications that cannot be missed in Greenplum 6.0?

机器学习——特征选择

Raja Koduri澄清Arc GPU跳票传闻 AXG年底前新推四条产品线

ML之PDP:基于FIFA 2018 Statistics(2018年俄罗斯世界杯足球赛)球队比赛之星分类预测数据集利用DT决策树&RF随机森林+PDP部分依赖图可视化实现模型可解释性之详细攻略
随机推荐
Classic test interview questions set - logical reasoning questions
js背景切换时钟js特效代码
ARC115F Migration
odoo--qweb模板介绍(一)
AT4108 [ARC094D] Normalization
树形dp小总结(换根,基环树,杂七杂八的dp)
阿里 P7 到底是怎样的水平?
[Go]四、模块和包、流程控制、结构体
How to migrate the device data connected by RTSP of EasyCVR platform to EasyNVR?
CF338E Optimize!
No-code development platform application visible permission setting introductory tutorial
LeetCode二叉树系列——515.最每个树行中找最大值
创意loadingjs特效小点跳跃动画
The way of programmers' cultivation: do one's own responsibilities, be clear in reality - lead to the highest realm of pragmatism
R语言ggstatsplot包grouped_ggwithinstats函数可视化分组小提琴图、并添加假设检验结果(包含样本数、统计量、效应大小及其置信区间、显著性、组间两两比较、贝叶斯假设)
“封号斗罗” 程序员修炼之道:通向务实的最高境界
for循环的3个表达式执行顺序
群晖系统安装相关文件分享
SyntaxError: EOL while scanning string literal
leetcode207.课程表(判断有向图是否有环)