当前位置:网站首页>DBNN实验进展
DBNN实验进展
2022-06-28 22:16:00 【思考实践】
1. Precsion,Recall,f1_scorem
precision of mbnn is 0.8756 recall of mbnn is 0.8670 f1_score of mbnn is 0.8689
precision of cnn is 0.8952 recall of cnn is 0.8943 f1_score of cnn is 0.8946
precision of mbnnst is 0.8835 recall of mbnnst is 0.8847 f1_score of mbnnst is 0.8835
2.混淆矩阵
| CNN | MBNN | MBNNST |
![]() | ![]() | ![]() |
3.各类别准确率
Precission of each category when using CNN: 0 : 0.8748 1 : 0.8121 2 : 0.9960
Precission of each category when using MBNN: 0 : 0.8856 1 : 0.7306 2 : 0.9848
Precission of each category when using MBNNST: 0 : 0.8661 1 : 0.7888 2 : 0.9992
精度都差不多的情况下,MBNN可以减小推理时间的开销
4.效率验证
Average Time of MBNN using cpu for block is 0.4906
Max Time of MBNN using cpu for block is 0.6025
Min Time of MBNN using cpu for block is 0.5275
Average Time of CNN using cpu for block is 0.8985
Max Time of CNN using cpu for block is 1.0449
Min Time of CNN using cpu for block is 0.9649
Average Time of MBNN using cpu for block75 is 0.8868
Max Time of MBNN using cpu for block75 is 1.0955
Min Time of MBNN using cpu for block75 is 0.9644
Average Time of CNN using cpu for block75 is 0.9319
Max Time of CNN using cpu for block75 is 1.1225
Min Time of CNN using cpu for block75 is 0.9826
Average Time of MBNN using cpu for common is 0.8949
Max Time of MBNN using cpu for common is 1.0635
Min Time of MBNN using cpu for common is 0.9661
Average Time of CNN using cpu for common is 0.9518
Max Time of CNN using cpu for common is 1.1473
Min Time of CNN using cpu for common is 0.9678
分析一下,就模型MBNN而言,确实block的情况推理时间走的简单分支,相较common、block0.75的情况,就推理时间而言,自然就减小了许多
如何解释第二分支下的推理时间减少呢?与天放交流一下下,交流完毕,完全有可能是误差,因为这个时间差别不大

矩形代表平均值,上面这个工字型代表最大值与最小值的区间
实验主要就做
不同模型推理速度的对比
模型精度的提升/混淆矩阵
不同平台下的推理速度对比
代码存在的问题没有添加Other逻辑
边栏推荐
- Zadig 正式推出 VS Code 插件,本地开发更高效
- k线图基础知识图解——单根K线的含义
- flutter通过 GlobalKey 获取界面任意元素坐标尺寸
- 华为云GaussDB(for Redis)揭秘第19期:六大秒级能力盘点
- 【SSH】无密码登录
- Hardware development notes (VII): basic process of hardware development, making a USB to RS232 module (VI): creating 0603 package and associating principle graphic devices
- 利用Redis实现点赞功能的示例代码
- Description détaillée du schéma technique du sous - environnement syntonique auto - test de Zadig pour les développeurs
- Windows mysql5.7 enable binlog log
- Qt5.15中qsrand,srand随机数生成函数已弃用问题
猜你喜欢

What does project management really manage?

Appium automated test Jiugongge unlock

ansible生产环境使用场景(七):批量部署elk客户端

Architecture design of e-commerce secsha system

Icon fill color and background color change together

What is low code development?

Considerations on the construction of operation and maintenance system - stability

Jointly explore digital technology and information security, and the fourth China Russia Digital Forum was successfully held

PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)

windows mysql5.7 开启binlog日志
随机推荐
如何制作精美的图片
Simple understanding of counting and sorting
【SSH】无密码登录
Icon fill color and background color change together
Zadig 正式推出 VS Code 插件,本地开发更高效
现在还能入“坑”数据分析吗?看看2022年数据分析热门岗位!
【HackTheBox】 meow
Mysql通过ibd文件恢复数据的详细步骤
Huawei cloud gaussdb (for redis) unveiling issue 19: inventory of six second level capabilities
爱数SMART 2022峰会开启,分享数据战略与建设数据驱动型组织方法论
【HackTheBox】dancing(SMB)
场景化接口开发利器,金蝶云苍穹新版OpenAPI引擎来了!
给朋友的忠告
职场进阶 | 了解岗位优势三板斧之“进场”
With the development of industrial Internet as the starting point, the industry can enter a new stage of development
Zadig + sonarqube, ensuring the safety of the development process
Advanced workplace | understand the "entry" of position advantages
Deploy grafana to realize graphical monitoring
5毛VS600亿,食品安全问题是卫龙上市最大的拦路虎?
The new version of OpenAPI engine of Kingdee cloud dome is coming!


