当前位置:网站首页>Ernie gram, an explicit and complete n-gram mask language model, implements explicit n-gram semantic unit knowledge modeling.
Ernie gram, an explicit and complete n-gram mask language model, implements explicit n-gram semantic unit knowledge modeling.
2022-07-01 02:05:00 【Artificial intelligence Zeng Xiaojian】
Model framework
from ERNIE 1.0 rise , Baidu researchers introduced Knowledge increases Study , adopt
Mask consecutive words 、
phrase、
named entity etc. Semantic knowledge unit ,
Achieve better pre training learning . This open source general semantic understanding model ERNIE-Gram Further more , Proposed Explicit 、 complete Of n-gram Mask language model , Implements explicit n-gram Semantic unit knowledge modeling .
ERNIE Multi granularity pre training semantic understanding technology
As the basic semantic unit of naturallanguageprocessing , Fuller language granularity learning can help the model to achieve stronger semantic understanding :
- ERNIE-Gram Propose explicit complete n-gram Multi granularity mask language model , Synchronous modeling n-gram Inside and n-gram Between The semantic relationship of , Learning at the same time ** fine-grained (fine-grained) and coarse-grained (coarse-grained)** Semantic information
- ERNIE-Gram use Dual flow structure , In the process of pre training, the hierarchical prediction of single location and multi meaning is realized , Further enhance semantic knowledge learning
ERNIE-Gram Multi granularity pre training semantic understanding technology , stay Preliminary training (pre-training) Stage implements explicit multi granularity semantic signal learning , stay fine-tuning (fine-tuning) Phase adoption bert-style Fine tuning mode , Without increasing parameters and computational complexity , obtain 10 term English authoritative task SOTA. On the Chinese task ,ERNIE-Gram Include NLI、 Reading comprehension needs to be enriched 、 Multi level semantic understanding tasks are made public SOTA.
ERNIE-Gram Work has been NAACL-HLT 2021 As a long article , See... For more details link.

ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding
边栏推荐
- 【agora】用户管理
- 股票开户有哪些优惠活动?另外,手机开户安全么?
- AS400 大厂面试
- PMP是什么?
- Leetcode(524)——通过删除字母匹配到字典里最长单词
- Mathematical knowledge: 01 sequence satisfying conditions - find combinatorial number
- 求两个线段公共部分的长度
- With regard to the white box test, you have to master these skills~
- 小程序云开发之--微信公众号文章采集篇
- Do you write API documents or code first?
猜你喜欢

AS400 API 从零到一的整个历程

int和位数组互转

机器学习10-信念贝叶斯分类器

Qu'est - ce que le PMP?

【2022年】江西省研究生数学建模方案、代码

VirtualBox 安装增强功能
![[无线通信基础-15]:图解移动通信技术与应用发展-3- 数字通信2G GSM、CDMA、3G WDCMA/CDMA200/TD-SCDMA、4G LTE、5G NR概述](/img/22/1efa444220131359b06005f597c9db.png)
[无线通信基础-15]:图解移动通信技术与应用发展-3- 数字通信2G GSM、CDMA、3G WDCMA/CDMA200/TD-SCDMA、4G LTE、5G NR概述

Connectivity basis of Graphs

After working for 6 years, let's take stock of the golden rule of the workplace where workers mix up

How does the property send a text message to the owner?
随机推荐
Winodws 快速添加开机启动项
Calculate special bonus
SWT/ANR问题--Binder Stuck
Log4j2 ThreadContext日志链路追踪
FL Studio20.9水果软件高级中文版电音编曲
修复表中的名字(首字符大写,其他小写)
(总结一)Halcon基础之寻找目标特征+转正
electron之坑addon
Alphabet rearrange inator 3000 (dictionary tree custom sorting)
go导入自建包
There is no future to be expected. It is just the last fantasy of a migrant worker before he dies
laravel 事件 & 监听
Factory + strategy mode
With one-stop insight into industry hot spots, the new function "traffic market" of feigua data station B is launched!
MYSQL 数据库查看磁盘占用情况
RocketQA:通过跨批次负采样(cross-batch negatives)、去噪的强负例采样(denoised hard negative sampling)与数据增强(data augment
SQL语句关联表 如何添加关联表的条件 [需要null值或不需要null值]
小程序中实现excel数据的批量导入
A preliminary understanding of operator overloading
Selenium经典面试题-多窗口切换解决方案