当前位置:网站首页>Ernie gram, an explicit and complete n-gram mask language model, implements explicit n-gram semantic unit knowledge modeling.
Ernie gram, an explicit and complete n-gram mask language model, implements explicit n-gram semantic unit knowledge modeling.
2022-07-01 02:05:00 【Artificial intelligence Zeng Xiaojian】
Model framework
from ERNIE 1.0 rise , Baidu researchers introduced Knowledge increases Study , adopt
Mask consecutive words 、
phrase、
named entity etc. Semantic knowledge unit ,
Achieve better pre training learning . This open source general semantic understanding model ERNIE-Gram Further more , Proposed Explicit 、 complete Of n-gram Mask language model , Implements explicit n-gram Semantic unit knowledge modeling .
ERNIE Multi granularity pre training semantic understanding technology
As the basic semantic unit of naturallanguageprocessing , Fuller language granularity learning can help the model to achieve stronger semantic understanding :
- ERNIE-Gram Propose explicit complete n-gram Multi granularity mask language model , Synchronous modeling n-gram Inside and n-gram Between The semantic relationship of , Learning at the same time ** fine-grained (fine-grained) and coarse-grained (coarse-grained)** Semantic information
- ERNIE-Gram use Dual flow structure , In the process of pre training, the hierarchical prediction of single location and multi meaning is realized , Further enhance semantic knowledge learning
ERNIE-Gram Multi granularity pre training semantic understanding technology , stay Preliminary training (pre-training) Stage implements explicit multi granularity semantic signal learning , stay fine-tuning (fine-tuning) Phase adoption bert-style Fine tuning mode , Without increasing parameters and computational complexity , obtain 10 term English authoritative task SOTA. On the Chinese task ,ERNIE-Gram Include NLI、 Reading comprehension needs to be enriched 、 Multi level semantic understanding tasks are made public SOTA.
ERNIE-Gram Work has been NAACL-HLT 2021 As a long article , See... For more details link.

ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding
边栏推荐
- Objects and object variables
- When facing the industrial Internet, they even use the ways and methods of consuming the Internet to land and practice the industrial Internet
- 聚焦绿色低碳,数据中心散热进入“智能冷却”新时代
- Check the disk usage of MySQL database
- 哪有什么未来可期,不过是打工人临死前最后的幻想罢了
- (translation) reasons why real-time inline verification is easier for users to make mistakes
- 静态域与静态方法
- 【JS】【掘金】获取关注了里不在关注者里的人
- SWT/ANR问题--Deadlock
- How does the property send a text message to the owner?
猜你喜欢
随机推荐
How does the property send a text message to the owner?
Leetcode 面试题 17.10. 主要元素
opencv -- 笔记
【2022年】江西省研究生数学建模方案、代码
(翻译)实时内联验证更容易让用户犯错的原因
int和位数组互转
【做题打卡】集成每日5题分享(第一期)
Video tutorial | Chang'an chain launched a series of video tutorial collections (Introduction)
AS400 大厂面试
[fundamentals of wireless communication-14]: illustrated mobile communication technology and application development-2-the first generation mobile analog communication big brother
QML控件类型:ToolTip
electron之坑addon
Use of laravel carbon time processing class
【JS给元素添加属性:setAttribute;classList.remove;classList.add;】
Leetcode (524) -- match the longest word in the dictionary by deleting letters
Check the disk usage of MySQL database
org. redisson. client. Redisresponsetimeoutexception: redis server response timeout (3000 ms) error resolution
P6773 [noi2020] destiny (DP, segment tree merging)
AS400 entretien d'usine
聚焦绿色低碳,数据中心散热进入“智能冷却”新时代



![Pytorch —— 基础指北_贰 高中生都能看懂的[反向传播和梯度下降]](/img/6e/279dbb7a8d7a5ecd240de464c5b8b2.png)





