当前位置:网站首页>Matrix analysis notes (II)

Matrix analysis notes (II)

2022-06-23 19:07:00 Bachuan Xiaoxiaosheng

λ \lambda λ matrix

set up a i j ( λ ) ( i = 1... m , j = 1... n ) a_{ij}(\lambda)(i=1...m,j=1...n) aij(λ)(i=1...m,j=1...n) It's a number field F F F Upper polynomial , said
A ( λ ) = [ a 11 ( λ ) a 12 ( λ ) ⋯ a 1 n ( λ ) a 21 ( λ ) a 22 ( λ ) ⋯ a 2 n ( λ ) ⋮ ⋮ ⋱ ⋮ a m 1 ( λ ) a m 2 ( λ ) ⋯ a m n ( λ ) ] A(\lambda)= \begin{bmatrix} a_{11}(\lambda) & a_{12}(\lambda) & \cdots & a_{1n}(\lambda)\\ a_{21}(\lambda) & a_{22}(\lambda) & \cdots & a_{2n}(\lambda) \\ \vdots & \vdots & \ddots & \vdots\\ a_{m1}(\lambda) & a_{m2}(\lambda) & \cdots & a_{mn}(\lambda) \end{bmatrix} A(λ)=a11(λ)a21(λ)am1(λ)a12(λ)a22(λ)am2(λ)a1n(λ)a2n(λ)amn(λ) Is a polynomial matrix or λ \lambda λ matrix
among a i j ( λ ) ( i = 1... m , j = 1... n ) a_{ij}(\lambda)(i=1...m,j=1...n) aij(λ)(i=1...m,j=1...n) The highest number of times is A ( λ ) A(\lambda) A(λ) frequency

For example, digital matrix , Characteristic matrix λ E − A \lambda E-A λEA

Rank

if λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) There is r ( r ≥ 1 ) r ( r\ge 1 ) r(r1) The order is not zero , And all r + 1 r+1 r+1 Order subformula ( If any ) It's all zero , said A ( λ ) A(\lambda) A(λ) The rank of is r r r, Write it down as r a n k A ( λ ) = r rankA(\lambda)=r rankA(λ)=r, The rank of the zero matrix is 0 0 0

Elementary transformation

  • That's ok ( Column ) transposition
  • Multiply lines by numbers ( Column )
  • That's ok ( Column ) Doubling

Where the multiple is ϕ ( λ ) \phi(\lambda) ϕ(λ), by λ \lambda λ A polynomial of

That's ok ( Column ) Transformation is equivalent to left ( Right ) Multiply the corresponding elementary matrix

Equivalent

if A ( λ ) A(\lambda) A(λ) After a finite number of elementary transformations, it becomes B ( λ ) B(\lambda) B(λ) said A ( λ ) A(\lambda) A(λ) And B ( λ ) B(\lambda) B(λ) Equivalent , Write it down as A ( λ ) ≃ B ( λ ) A(\lambda)\simeq B(\lambda) A(λ)B(λ)
Equivalence relation satisfies

  • reflexivity
  • symmetry
  • Transitivity

Smith Standard shape

For any nonzero λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) Are equivalent to one “ Diagonal matrix ”
A ( λ ) ≃ [ d 1 ( λ ) ⋱ d r ( λ ) 0 ⋱ 0 ] A(\lambda)\simeq \begin{bmatrix} d_{1}(\lambda) & & & & & \\ & \ddots & & & & \\ & & d_{r}(\lambda) & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & &0 \end{bmatrix} A(λ)d1(λ)dr(λ)00
among r ≥ 1 r \ge 1 r1, d i ( λ ) d_{i}(\lambda) di(λ) The coefficient of the first term is 1 1 1, And d i ( λ ) ∣ d i + 1 ( λ ) d_{i}(\lambda)|d_{i+1}(\lambda) di(λ)di+1(λ)
In this form λ \lambda λ Matrix scale Smith Standard shape
d 1 ( λ ) , . . . , d r ( λ ) d_{1}(\lambda),...,d_{r}(\lambda) d1(λ),...,dr(λ) call A ( λ ) A(\lambda) A(λ) Invariant factors

Uniqueness

A ( λ ) A(\lambda) A(λ) by λ \lambda λ Matrix and r a n k ( A ( λ ) ) = r rank(A(\lambda))=r rank(A(λ))=r For any positive integer k , 1 ≤ k ≤ r k , 1 \le k \le r k,1kr, A ( λ ) A(\lambda) A(λ) There must be non-zero k k k Order subformula , A ( λ ) A(\lambda) A(λ) All k k k The coefficient of the first term of the order formula is 1 1 1 The greatest common factor of D k ( λ ) D_{k}(\lambda) Dk(λ) be called A ( λ ) A(\lambda) A(λ) Of k k k Determinant factor of order

obviously , if r a n k ( A ( λ ) ) = r rank(A(\lambda))=r rank(A(λ))=r, Then determinant factors share r r r individual

equivalent λ \lambda λ A matrix has the same determinant factor of each order , So they have the same rank

λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) Of Smith The canonical form is the only

The determinant factor of each order of the canonical form is
D 1 ( λ ) = d 1 ( λ ) D 2 ( λ ) = d 1 ( λ ) d 2 ( λ ) ⋮ D r ( λ ) = d 1 ( λ ) d 2 ( λ ) ⋯ d r ( λ ) D_{1}(\lambda)=d_{1}(\lambda)\\ D_{2}(\lambda)=d_{1}(\lambda)d_{2}(\lambda)\\ \vdots\\ D_{r}(\lambda)=d_{1}(\lambda)d_{2}(\lambda)\cdots d_{r}(\lambda)\\ D1(λ)=d1(λ)D2(λ)=d1(λ)d2(λ)Dr(λ)=d1(λ)d2(λ)dr(λ)
Thus there are
d 1 ( λ ) = D 1 ( λ ) d 2 ( λ ) = D 2 ( λ ) D 1 ( λ ) ⋮ d r ( λ ) = D r ( λ ) D r − 1 ( λ ) d_{1}(\lambda)=D_{1}(\lambda)\\ d_{2}(\lambda)=\frac{D_{2}(\lambda)}{D_{1}(\lambda)}\\ \vdots\\ d_{r}(\lambda)=\frac{D_{r}(\lambda)}{D_{r-1}(\lambda)}\\ d1(λ)=D1(λ)d2(λ)=D1(λ)D2(λ)dr(λ)=Dr1(λ)Dr(λ)
because A ( λ ) A(\lambda) A(λ) With the above Smith The canonical form has the same determinant factor of each order
therefore A ( λ ) A(\lambda) A(λ) The determinant factor of each order of is D 1 ( λ ) , . . . , D r ( λ ) D_{1}(\lambda),...,D_{r}(\lambda) D1(λ),...,Dr(λ)

Given A ( λ ) A(\lambda) A(λ) The determinant factors for each row have been determined

So the invariant factor
d 1 ( λ ) , . . . , d r ( λ ) d_{1}(\lambda),...,d_{r}(\lambda) d1(λ),...,dr(λ)
Uniquely determined by determinant factor , A ( λ ) A(\lambda) A(λ) Of Smith The canonical form is the only

Equivalent

  • λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) And B ( λ ) B(\lambda) B(λ) The necessary and sufficient condition for equivalence is that the determinant factors of each order are the same
  • λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) And B ( λ ) B(\lambda) B(λ) The necessary and sufficient condition for equivalence is that they have the same invariant factor

Elementary factors

set up λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) The invariant factor is d 1 ( λ ) , . . . , d r ( λ ) d_{1}(\lambda),...,d_{r}(\lambda) d1(λ),...,dr(λ), In the complex number field, they are decomposed into the power product of the first-order factor
d 1 ( λ ) = ( λ − λ 1 ) e 11 ( λ − λ 1 ) e 12 . . . ( λ − λ 1 ) e 1 s d 2 ( λ ) = ( λ − λ 1 ) e 21 ( λ − λ 1 ) e 22 . . . ( λ − λ 1 ) e 2 s ⋮ d r ( λ ) = ( λ − λ 1 ) e r 1 ( λ − λ 1 ) e r 2 . . . ( λ − λ 1 ) e r s d_{1}(\lambda)=(\lambda-\lambda_{1})^{e_{11}}(\lambda-\lambda_{1})^{e_{12}}...(\lambda-\lambda_{1})^{e_{1s}}\\ d_{2}(\lambda)=(\lambda-\lambda_{1})^{e_{21}}(\lambda-\lambda_{1})^{e_{22}}...(\lambda-\lambda_{1})^{e_{2s}}\\ \vdots\\ d_{r}(\lambda)=(\lambda-\lambda_{1})^{e_{r1}}(\lambda-\lambda_{1})^{e_{r2}}...(\lambda-\lambda_{1})^{e_{rs}}\\ d1(λ)=(λλ1)e11(λλ1)e12...(λλ1)e1sd2(λ)=(λλ1)e21(λλ1)e22...(λλ1)e2sdr(λ)=(λλ1)er1(λλ1)er2...(λλ1)ers
among λ 1 , . . . , λ s \lambda_{1},...,\lambda_{s} λ1,...,λs Are mutually exclusive plural numbers , e i j e_{ij} eij Is a nonnegative integer , All factors with exponent greater than zero ( λ − λ j ) e i j , e i j > 0 , i = 1... r , j = 1... s (\lambda-\lambda_{j})^{e_{ij}},e_{ij}>0,i=1...r,j=1...s (λλj)eij,eij>0,i=1...r,j=1...s call A ( λ ) A(\lambda) A(λ) Elementary factors
And there are
0 ≤ e 11 ≤ e 21 ≤ . . . ≤ e r 1 0 ≤ e 12 ≤ e 22 ≤ . . . ≤ e r 2 ⋮ 0 ≤ e 1 s ≤ e 2 s ≤ . . . ≤ e r s 0\le e_{11}\le e_{21}\le ...\le e_{r1}\\ 0\le e_{12}\le e_{22}\le ...\le e_{r2}\\ \vdots\\ 0\le e_{1s}\le e_{2s}\le ...\le e_{rs}\\ 0e11e21...er10e12e22...er20e1se2s...ers
λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) and B ( λ ) B(\lambda) B(λ) The necessary and sufficient conditions for equivalence are the same rank and elementary factor

if λ \lambda λ matrix
A ( λ ) = [ A 1 ( λ ) A 1 ( λ ) ⋱ A t ( λ ) ] A(\lambda)= \begin{bmatrix} A_{1}(\lambda) & & & \\ & A_{1}(\lambda) & & \\ & & \ddots & \\ & & & A_{t}(\lambda) \end{bmatrix} A(λ)=A1(λ)A1(λ)At(λ)
be A 1 ( λ ) , . . . , A t ( λ ) A_{1}(\lambda),...,A_{t}(\lambda) A1(λ),...,At(λ) All elementary factors are A ( λ ) A(\lambda) A(λ) All elementary factors

λ \lambda λ matrix
A ( λ ) = [ f 1 ( λ ) ⋱ f t ( λ ) 0 ⋱ 0 ] A(\lambda)= \begin{bmatrix} f_{1}(\lambda) & & & & & \\ & \ddots & & & & \\ & & f_{t}(\lambda) & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0 \end{bmatrix} A(λ)=f1(λ)ft(λ)00
be f 1 ( λ ) , . . . , f t ( λ ) f_{1}(\lambda),...,f_{t}(\lambda) f1(λ),...,ft(λ) The powers of all first-order factors are all A ( λ ) A(\lambda) A(λ) All elementary factors of

The number matrix is similar

For numeric matrices A A A, We call λ I − A \lambda I-A λIA Determinant factor / The invariant factor is A A A Determinant factor / Invariant factors , call λ I − A \lambda I-A λIA The primary factor of is A A A The elementary factor of

set up A , B A,B A,B For two n n n Order digital matrix , that A A A And B B B The necessary and sufficient condition for similarity is that their characteristic matrices λ I − A \lambda I-A λIA And λ I − B \lambda I-B λIB Equivalent

For any numerical matrix A A A, ∣ λ I − A ∣ ≠ 0 |\lambda I-A|\neq0 λIA=0 be
r a n k ( λ I − A ) = n rank(\lambda I-A)=n rank(λIA)=n

Two square matrices of the same order A , B A,B A,B The necessary and sufficient condition for similarity is that they have the same elementary factor
Two square matrices of the same order A , B A,B A,B The necessary and sufficient condition for similarity is that they have the same determinant factor / Invariant factors

Square matrix ruoerdan standard form

call n i n_{i} ni Order matrix
J i = [ a i 1 a i 1 ⋱ ⋱ ⋱ 1 a i ] J_{i}= \begin{bmatrix} a_{i} & 1 & & & \\ & a_{i} & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1\\ & & & & a_{i} \end{bmatrix} Ji=ai1ai11ai
by Jordan block
( λ I − J i ) (\lambda I-J_{i}) (λIJi) The determinant factor is
D n i ( λ ) = ( λ − a i ) n i D n i − 1 ( λ ) = . . . = D 1 ( λ ) = 1 D_{n_{i}}(\lambda)=(\lambda-a_{i})^{n_{i}}\\ D_{n_{i}-1}(\lambda)=...=D_{1}(\lambda)=1 Dni(λ)=(λai)niDni1(λ)=...=D1(λ)=1
therefore J i J_{i} Ji The primary factor is ( λ − a i ) n i (\lambda-a_{i})^{n_{i}} (λai)ni

if J 1 . . . J s J_{1}...J_{s} J1...Js All for Jordan block , Then it is called quasi diagonal matrix
J = [ J 1 J 2 ⋱ J s ] J= \begin{bmatrix} J_{1} & & & \\ & J_{2} & & \\ & & \ddots & \\ & & & J_{s} \end{bmatrix} J=J1J2Js
by Jordan Standard
J J J The primary factor of is ( λ − a 1 ) n 1 , ( λ − a 2 ) n 2 , . . . , ( λ − a s ) n s (\lambda-a_{1})^{n_{1}},(\lambda-a_{2})^{n_{2}},...,(\lambda-a_{s})^{n_{s}} (λa1)n1,(λa2)n2,...,(λas)ns

set up A A A by n n n Square matrix , The primary factor is
( λ − a 1 ) n 1 , . . . , ( λ − a s ) n s (\lambda-a_{1})^{n_{1}},...,(\lambda-a_{s})^{n_{s}} (λa1)n1,...,(λas)ns
be A ∼ J = d i a g ( J 1 , . . . , J S ) A\sim J=diag(J_{1},...,J_{S}) AJ=diag(J1,...,JS)

Jordan Block ordering is not important

n n n Order matrix A A A The necessary and sufficient condition for diagonalization is A A A The elementary factors of are all primary factors

Similarity transformation matrix

set up n n n Square matrix A A A Of Jordan The standard form is J J J, Then there is an invertible matrix P P P bring P − 1 A P = J P^{-1}AP=J P1AP=J, call P P P Is a similar transformation matrix

nature

  • Every Jordan block J i J_{i} Ji Corresponding to λ i \lambda_{i} λi An eigenvector
  • For a given λ i \lambda_{i} λi Corresponding Jordan The number of blocks is equal to λ i \lambda_{i} λi Geometric multiplicity of
  • The eigenvalue λ i \lambda_{i} λi Corresponding to all Jordan The sum of the block orders is equal to λ i \lambda_{i} λi Algebraic repetition
  • set up n n n Square matrix A A A is equivalent to Jordan Standard shape J J J, And P − 1 A P = J P^{-1}AP=J P1AP=J, be
    r a n k ( λ i E − A ) l = r a n k P − 1 ( λ i E − A ) l P = r a n k ( P − 1 ( λ i E − A ) P ) l = r a n k ( λ i E − J ) l l = 1 , 2 , . . . rank(\lambda_{i}E-A)^{l}=rankP^{-1}(\lambda_{i}E-A)^{l}P=rank(P^{-1}(\lambda_{i}E-A)P)^{l}=rank(\lambda_{i}E-J)^{l}\\ l=1,2,... rank(λiEA)l=rankP1(λiEA)lP=rank(P1(λiEA)P)l=rank(λiEJ)ll=1,2,...
  • about n i n_{i} ni Step Jordan block J i J_{i} Ji, ( J i − λ i E ) l (J_{i}-\lambda_{i}E)^{l} (JiλiE)l The rank change of is as follows
    r a n k ( J i − λ i E ) = n i − 1 , r a n k ( J i − λ i E ) 2 = n i − 2 , ⋮ r a n k ( J i − λ i E ) n i − 1 = 1 , r a n k ( J i − λ i E ) h = 0 , ( h ≥ n i ) rank(J_{i}-\lambda_{i}E)=n_{i}-1,\\ rank(J_{i}-\lambda_{i}E)^{2}=n_{i}-2,\\ \vdots\\ rank(J_{i}-\lambda_{i}E)^{n_{i}-1}=1,\\ rank(J_{i}-\lambda_{i}E)^{h}=0,(h \ge n_{i}) rank(JiλiE)=ni1,rank(JiλiE)2=ni2,rank(JiλiE)ni1=1,rank(JiλiE)h=0,(hni)
    if λ j ≠ λ i \lambda_{j}\neq \lambda_{i} λj=λi, be
    r a n k ( J j − λ i E ) l = n j , ( l = 1 , 2 , . . . ) rank(J_{j}-\lambda_{i}E)^{l}=n_{j},(l=1,2,...) rank(JjλiE)l=nj,(l=1,2,...)
    That is, with l l l increase , influence r a n k ( J − λ i E ) l rank(J-\lambda_{i}E)^{l} rank(JλiE)l Only λ i \lambda_{i} λi Corresponding Jordan block

Jordan Another solution of standard type

Yes n n n Order matrix A A A, if
r a n k ( λ i I − A ) = s 1 , r a n k ( λ i I − A ) 2 = s 2 , ⋮ r a n k ( λ i I − A ) l = s l , r a n k ( λ i I − A ) l + 1 = s l rank(\lambda_{i}I-A)=s_{1},\\ rank(\lambda_{i}I-A)^{2}=s_{2},\\ \vdots\\ rank(\lambda_{i}I-A)^{l}=s_{l},\\ rank(\lambda_{i}I-A)^{l+1}=s_{l} rank(λiIA)=s1,rank(λiIA)2=s2,rank(λiIA)l=sl,rank(λiIA)l+1=sl
For A A A The characteristic root of the λ = λ i \lambda=\lambda_{i} λ=λi, share n − s 1 n-s_{1} ns1 individual Jordan block , The highest order is l l l, Order ≥ 2 \ge 2 2 Of Jordan There are s 1 − s 2 s_{1}-s_{2} s1s2 individual , Order ≥ 3 \ge 3 3 Of Jordan There are s 2 − s 3 s_{2}-s_{3} s2s3 individual ,…, l l l Have of order s l − 1 − s l s_{l-1}-s_{l} sl1sl individual

原网站

版权声明
本文为[Bachuan Xiaoxiaosheng]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/174/202206231737022960.html