当前位置:网站首页>Matrix analysis notes (II)
Matrix analysis notes (II)
2022-06-23 19:07:00 【Bachuan Xiaoxiaosheng】
λ \lambda λ matrix
set up a i j ( λ ) ( i = 1... m , j = 1... n ) a_{ij}(\lambda)(i=1...m,j=1...n) aij(λ)(i=1...m,j=1...n) It's a number field F F F Upper polynomial , said
A ( λ ) = [ a 11 ( λ ) a 12 ( λ ) ⋯ a 1 n ( λ ) a 21 ( λ ) a 22 ( λ ) ⋯ a 2 n ( λ ) ⋮ ⋮ ⋱ ⋮ a m 1 ( λ ) a m 2 ( λ ) ⋯ a m n ( λ ) ] A(\lambda)= \begin{bmatrix} a_{11}(\lambda) & a_{12}(\lambda) & \cdots & a_{1n}(\lambda)\\ a_{21}(\lambda) & a_{22}(\lambda) & \cdots & a_{2n}(\lambda) \\ \vdots & \vdots & \ddots & \vdots\\ a_{m1}(\lambda) & a_{m2}(\lambda) & \cdots & a_{mn}(\lambda) \end{bmatrix} A(λ)=⎣⎢⎢⎢⎡a11(λ)a21(λ)⋮am1(λ)a12(λ)a22(λ)⋮am2(λ)⋯⋯⋱⋯a1n(λ)a2n(λ)⋮amn(λ)⎦⎥⎥⎥⎤ Is a polynomial matrix or λ \lambda λ matrix
among a i j ( λ ) ( i = 1... m , j = 1... n ) a_{ij}(\lambda)(i=1...m,j=1...n) aij(λ)(i=1...m,j=1...n) The highest number of times is A ( λ ) A(\lambda) A(λ) frequency
For example, digital matrix , Characteristic matrix λ E − A \lambda E-A λE−A
Rank
if λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) There is r ( r ≥ 1 ) r ( r\ge 1 ) r(r≥1) The order is not zero , And all r + 1 r+1 r+1 Order subformula ( If any ) It's all zero , said A ( λ ) A(\lambda) A(λ) The rank of is r r r, Write it down as r a n k A ( λ ) = r rankA(\lambda)=r rankA(λ)=r, The rank of the zero matrix is 0 0 0
Elementary transformation
- That's ok ( Column ) transposition
- Multiply lines by numbers ( Column )
- That's ok ( Column ) Doubling
Where the multiple is ϕ ( λ ) \phi(\lambda) ϕ(λ), by λ \lambda λ A polynomial of
That's ok ( Column ) Transformation is equivalent to left ( Right ) Multiply the corresponding elementary matrix
Equivalent
if A ( λ ) A(\lambda) A(λ) After a finite number of elementary transformations, it becomes B ( λ ) B(\lambda) B(λ) said A ( λ ) A(\lambda) A(λ) And B ( λ ) B(\lambda) B(λ) Equivalent , Write it down as A ( λ ) ≃ B ( λ ) A(\lambda)\simeq B(\lambda) A(λ)≃B(λ)
Equivalence relation satisfies
- reflexivity
- symmetry
- Transitivity
Smith Standard shape
For any nonzero λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) Are equivalent to one “ Diagonal matrix ”
A ( λ ) ≃ [ d 1 ( λ ) ⋱ d r ( λ ) 0 ⋱ 0 ] A(\lambda)\simeq \begin{bmatrix} d_{1}(\lambda) & & & & & \\ & \ddots & & & & \\ & & d_{r}(\lambda) & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & &0 \end{bmatrix} A(λ)≃⎣⎢⎢⎢⎢⎢⎢⎡d1(λ)⋱dr(λ)0⋱0⎦⎥⎥⎥⎥⎥⎥⎤
among r ≥ 1 r \ge 1 r≥1, d i ( λ ) d_{i}(\lambda) di(λ) The coefficient of the first term is 1 1 1, And d i ( λ ) ∣ d i + 1 ( λ ) d_{i}(\lambda)|d_{i+1}(\lambda) di(λ)∣di+1(λ)
In this form λ \lambda λ Matrix scale Smith Standard shape
d 1 ( λ ) , . . . , d r ( λ ) d_{1}(\lambda),...,d_{r}(\lambda) d1(λ),...,dr(λ) call A ( λ ) A(\lambda) A(λ) Invariant factors
Uniqueness
A ( λ ) A(\lambda) A(λ) by λ \lambda λ Matrix and r a n k ( A ( λ ) ) = r rank(A(\lambda))=r rank(A(λ))=r For any positive integer k , 1 ≤ k ≤ r k , 1 \le k \le r k,1≤k≤r, A ( λ ) A(\lambda) A(λ) There must be non-zero k k k Order subformula , A ( λ ) A(\lambda) A(λ) All k k k The coefficient of the first term of the order formula is 1 1 1 The greatest common factor of D k ( λ ) D_{k}(\lambda) Dk(λ) be called A ( λ ) A(\lambda) A(λ) Of k k k Determinant factor of order
obviously , if r a n k ( A ( λ ) ) = r rank(A(\lambda))=r rank(A(λ))=r, Then determinant factors share r r r individual
equivalent λ \lambda λ A matrix has the same determinant factor of each order , So they have the same rank
λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) Of Smith The canonical form is the only
The determinant factor of each order of the canonical form is
D 1 ( λ ) = d 1 ( λ ) D 2 ( λ ) = d 1 ( λ ) d 2 ( λ ) ⋮ D r ( λ ) = d 1 ( λ ) d 2 ( λ ) ⋯ d r ( λ ) D_{1}(\lambda)=d_{1}(\lambda)\\ D_{2}(\lambda)=d_{1}(\lambda)d_{2}(\lambda)\\ \vdots\\ D_{r}(\lambda)=d_{1}(\lambda)d_{2}(\lambda)\cdots d_{r}(\lambda)\\ D1(λ)=d1(λ)D2(λ)=d1(λ)d2(λ)⋮Dr(λ)=d1(λ)d2(λ)⋯dr(λ)
Thus there are
d 1 ( λ ) = D 1 ( λ ) d 2 ( λ ) = D 2 ( λ ) D 1 ( λ ) ⋮ d r ( λ ) = D r ( λ ) D r − 1 ( λ ) d_{1}(\lambda)=D_{1}(\lambda)\\ d_{2}(\lambda)=\frac{D_{2}(\lambda)}{D_{1}(\lambda)}\\ \vdots\\ d_{r}(\lambda)=\frac{D_{r}(\lambda)}{D_{r-1}(\lambda)}\\ d1(λ)=D1(λ)d2(λ)=D1(λ)D2(λ)⋮dr(λ)=Dr−1(λ)Dr(λ)
because A ( λ ) A(\lambda) A(λ) With the above Smith The canonical form has the same determinant factor of each order
therefore A ( λ ) A(\lambda) A(λ) The determinant factor of each order of is D 1 ( λ ) , . . . , D r ( λ ) D_{1}(\lambda),...,D_{r}(\lambda) D1(λ),...,Dr(λ)
Given A ( λ ) A(\lambda) A(λ) The determinant factors for each row have been determined
So the invariant factor
d 1 ( λ ) , . . . , d r ( λ ) d_{1}(\lambda),...,d_{r}(\lambda) d1(λ),...,dr(λ)
Uniquely determined by determinant factor , A ( λ ) A(\lambda) A(λ) Of Smith The canonical form is the only
Equivalent
- λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) And B ( λ ) B(\lambda) B(λ) The necessary and sufficient condition for equivalence is that the determinant factors of each order are the same
- λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) And B ( λ ) B(\lambda) B(λ) The necessary and sufficient condition for equivalence is that they have the same invariant factor
Elementary factors
set up λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) The invariant factor is d 1 ( λ ) , . . . , d r ( λ ) d_{1}(\lambda),...,d_{r}(\lambda) d1(λ),...,dr(λ), In the complex number field, they are decomposed into the power product of the first-order factor
d 1 ( λ ) = ( λ − λ 1 ) e 11 ( λ − λ 1 ) e 12 . . . ( λ − λ 1 ) e 1 s d 2 ( λ ) = ( λ − λ 1 ) e 21 ( λ − λ 1 ) e 22 . . . ( λ − λ 1 ) e 2 s ⋮ d r ( λ ) = ( λ − λ 1 ) e r 1 ( λ − λ 1 ) e r 2 . . . ( λ − λ 1 ) e r s d_{1}(\lambda)=(\lambda-\lambda_{1})^{e_{11}}(\lambda-\lambda_{1})^{e_{12}}...(\lambda-\lambda_{1})^{e_{1s}}\\ d_{2}(\lambda)=(\lambda-\lambda_{1})^{e_{21}}(\lambda-\lambda_{1})^{e_{22}}...(\lambda-\lambda_{1})^{e_{2s}}\\ \vdots\\ d_{r}(\lambda)=(\lambda-\lambda_{1})^{e_{r1}}(\lambda-\lambda_{1})^{e_{r2}}...(\lambda-\lambda_{1})^{e_{rs}}\\ d1(λ)=(λ−λ1)e11(λ−λ1)e12...(λ−λ1)e1sd2(λ)=(λ−λ1)e21(λ−λ1)e22...(λ−λ1)e2s⋮dr(λ)=(λ−λ1)er1(λ−λ1)er2...(λ−λ1)ers
among λ 1 , . . . , λ s \lambda_{1},...,\lambda_{s} λ1,...,λs Are mutually exclusive plural numbers , e i j e_{ij} eij Is a nonnegative integer , All factors with exponent greater than zero ( λ − λ j ) e i j , e i j > 0 , i = 1... r , j = 1... s (\lambda-\lambda_{j})^{e_{ij}},e_{ij}>0,i=1...r,j=1...s (λ−λj)eij,eij>0,i=1...r,j=1...s call A ( λ ) A(\lambda) A(λ) Elementary factors
And there are
0 ≤ e 11 ≤ e 21 ≤ . . . ≤ e r 1 0 ≤ e 12 ≤ e 22 ≤ . . . ≤ e r 2 ⋮ 0 ≤ e 1 s ≤ e 2 s ≤ . . . ≤ e r s 0\le e_{11}\le e_{21}\le ...\le e_{r1}\\ 0\le e_{12}\le e_{22}\le ...\le e_{r2}\\ \vdots\\ 0\le e_{1s}\le e_{2s}\le ...\le e_{rs}\\ 0≤e11≤e21≤...≤er10≤e12≤e22≤...≤er2⋮0≤e1s≤e2s≤...≤ers
λ \lambda λ matrix A ( λ ) A(\lambda) A(λ) and B ( λ ) B(\lambda) B(λ) The necessary and sufficient conditions for equivalence are the same rank and elementary factor
if λ \lambda λ matrix
A ( λ ) = [ A 1 ( λ ) A 1 ( λ ) ⋱ A t ( λ ) ] A(\lambda)= \begin{bmatrix} A_{1}(\lambda) & & & \\ & A_{1}(\lambda) & & \\ & & \ddots & \\ & & & A_{t}(\lambda) \end{bmatrix} A(λ)=⎣⎢⎢⎡A1(λ)A1(λ)⋱At(λ)⎦⎥⎥⎤
be A 1 ( λ ) , . . . , A t ( λ ) A_{1}(\lambda),...,A_{t}(\lambda) A1(λ),...,At(λ) All elementary factors are A ( λ ) A(\lambda) A(λ) All elementary factors
λ \lambda λ matrix
A ( λ ) = [ f 1 ( λ ) ⋱ f t ( λ ) 0 ⋱ 0 ] A(\lambda)= \begin{bmatrix} f_{1}(\lambda) & & & & & \\ & \ddots & & & & \\ & & f_{t}(\lambda) & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0 \end{bmatrix} A(λ)=⎣⎢⎢⎢⎢⎢⎢⎡f1(λ)⋱ft(λ)0⋱0⎦⎥⎥⎥⎥⎥⎥⎤
be f 1 ( λ ) , . . . , f t ( λ ) f_{1}(\lambda),...,f_{t}(\lambda) f1(λ),...,ft(λ) The powers of all first-order factors are all A ( λ ) A(\lambda) A(λ) All elementary factors of
The number matrix is similar
For numeric matrices A A A, We call λ I − A \lambda I-A λI−A Determinant factor / The invariant factor is A A A Determinant factor / Invariant factors , call λ I − A \lambda I-A λI−A The primary factor of is A A A The elementary factor of
set up A , B A,B A,B For two n n n Order digital matrix , that A A A And B B B The necessary and sufficient condition for similarity is that their characteristic matrices λ I − A \lambda I-A λI−A And λ I − B \lambda I-B λI−B Equivalent
For any numerical matrix A A A, ∣ λ I − A ∣ ≠ 0 |\lambda I-A|\neq0 ∣λI−A∣=0 be
r a n k ( λ I − A ) = n rank(\lambda I-A)=n rank(λI−A)=n
Two square matrices of the same order A , B A,B A,B The necessary and sufficient condition for similarity is that they have the same elementary factor
Two square matrices of the same order A , B A,B A,B The necessary and sufficient condition for similarity is that they have the same determinant factor / Invariant factors
Square matrix ruoerdan standard form
call n i n_{i} ni Order matrix
J i = [ a i 1 a i 1 ⋱ ⋱ ⋱ 1 a i ] J_{i}= \begin{bmatrix} a_{i} & 1 & & & \\ & a_{i} & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1\\ & & & & a_{i} \end{bmatrix} Ji=⎣⎢⎢⎢⎢⎡ai1ai1⋱⋱⋱1ai⎦⎥⎥⎥⎥⎤
by Jordan block
( λ I − J i ) (\lambda I-J_{i}) (λI−Ji) The determinant factor is
D n i ( λ ) = ( λ − a i ) n i D n i − 1 ( λ ) = . . . = D 1 ( λ ) = 1 D_{n_{i}}(\lambda)=(\lambda-a_{i})^{n_{i}}\\ D_{n_{i}-1}(\lambda)=...=D_{1}(\lambda)=1 Dni(λ)=(λ−ai)niDni−1(λ)=...=D1(λ)=1
therefore J i J_{i} Ji The primary factor is ( λ − a i ) n i (\lambda-a_{i})^{n_{i}} (λ−ai)ni
if J 1 . . . J s J_{1}...J_{s} J1...Js All for Jordan block , Then it is called quasi diagonal matrix
J = [ J 1 J 2 ⋱ J s ] J= \begin{bmatrix} J_{1} & & & \\ & J_{2} & & \\ & & \ddots & \\ & & & J_{s} \end{bmatrix} J=⎣⎢⎢⎡J1J2⋱Js⎦⎥⎥⎤
by Jordan Standard
J J J The primary factor of is ( λ − a 1 ) n 1 , ( λ − a 2 ) n 2 , . . . , ( λ − a s ) n s (\lambda-a_{1})^{n_{1}},(\lambda-a_{2})^{n_{2}},...,(\lambda-a_{s})^{n_{s}} (λ−a1)n1,(λ−a2)n2,...,(λ−as)ns
set up A A A by n n n Square matrix , The primary factor is
( λ − a 1 ) n 1 , . . . , ( λ − a s ) n s (\lambda-a_{1})^{n_{1}},...,(\lambda-a_{s})^{n_{s}} (λ−a1)n1,...,(λ−as)ns
be A ∼ J = d i a g ( J 1 , . . . , J S ) A\sim J=diag(J_{1},...,J_{S}) A∼J=diag(J1,...,JS)
Jordan Block ordering is not important
n n n Order matrix A A A The necessary and sufficient condition for diagonalization is A A A The elementary factors of are all primary factors
Similarity transformation matrix
set up n n n Square matrix A A A Of Jordan The standard form is J J J, Then there is an invertible matrix P P P bring P − 1 A P = J P^{-1}AP=J P−1AP=J, call P P P Is a similar transformation matrix
nature
- Every Jordan block J i J_{i} Ji Corresponding to λ i \lambda_{i} λi An eigenvector
- For a given λ i \lambda_{i} λi Corresponding Jordan The number of blocks is equal to λ i \lambda_{i} λi Geometric multiplicity of
- The eigenvalue λ i \lambda_{i} λi Corresponding to all Jordan The sum of the block orders is equal to λ i \lambda_{i} λi Algebraic repetition
- set up n n n Square matrix A A A is equivalent to Jordan Standard shape J J J, And P − 1 A P = J P^{-1}AP=J P−1AP=J, be
r a n k ( λ i E − A ) l = r a n k P − 1 ( λ i E − A ) l P = r a n k ( P − 1 ( λ i E − A ) P ) l = r a n k ( λ i E − J ) l l = 1 , 2 , . . . rank(\lambda_{i}E-A)^{l}=rankP^{-1}(\lambda_{i}E-A)^{l}P=rank(P^{-1}(\lambda_{i}E-A)P)^{l}=rank(\lambda_{i}E-J)^{l}\\ l=1,2,... rank(λiE−A)l=rankP−1(λiE−A)lP=rank(P−1(λiE−A)P)l=rank(λiE−J)ll=1,2,... - about n i n_{i} ni Step Jordan block J i J_{i} Ji, ( J i − λ i E ) l (J_{i}-\lambda_{i}E)^{l} (Ji−λiE)l The rank change of is as follows
r a n k ( J i − λ i E ) = n i − 1 , r a n k ( J i − λ i E ) 2 = n i − 2 , ⋮ r a n k ( J i − λ i E ) n i − 1 = 1 , r a n k ( J i − λ i E ) h = 0 , ( h ≥ n i ) rank(J_{i}-\lambda_{i}E)=n_{i}-1,\\ rank(J_{i}-\lambda_{i}E)^{2}=n_{i}-2,\\ \vdots\\ rank(J_{i}-\lambda_{i}E)^{n_{i}-1}=1,\\ rank(J_{i}-\lambda_{i}E)^{h}=0,(h \ge n_{i}) rank(Ji−λiE)=ni−1,rank(Ji−λiE)2=ni−2,⋮rank(Ji−λiE)ni−1=1,rank(Ji−λiE)h=0,(h≥ni)
if λ j ≠ λ i \lambda_{j}\neq \lambda_{i} λj=λi, be
r a n k ( J j − λ i E ) l = n j , ( l = 1 , 2 , . . . ) rank(J_{j}-\lambda_{i}E)^{l}=n_{j},(l=1,2,...) rank(Jj−λiE)l=nj,(l=1,2,...)
That is, with l l l increase , influence r a n k ( J − λ i E ) l rank(J-\lambda_{i}E)^{l} rank(J−λiE)l Only λ i \lambda_{i} λi Corresponding Jordan block
Jordan Another solution of standard type
Yes n n n Order matrix A A A, if
r a n k ( λ i I − A ) = s 1 , r a n k ( λ i I − A ) 2 = s 2 , ⋮ r a n k ( λ i I − A ) l = s l , r a n k ( λ i I − A ) l + 1 = s l rank(\lambda_{i}I-A)=s_{1},\\ rank(\lambda_{i}I-A)^{2}=s_{2},\\ \vdots\\ rank(\lambda_{i}I-A)^{l}=s_{l},\\ rank(\lambda_{i}I-A)^{l+1}=s_{l} rank(λiI−A)=s1,rank(λiI−A)2=s2,⋮rank(λiI−A)l=sl,rank(λiI−A)l+1=sl
For A A A The characteristic root of the λ = λ i \lambda=\lambda_{i} λ=λi, share n − s 1 n-s_{1} n−s1 individual Jordan block , The highest order is l l l, Order ≥ 2 \ge 2 ≥2 Of Jordan There are s 1 − s 2 s_{1}-s_{2} s1−s2 individual , Order ≥ 3 \ge 3 ≥3 Of Jordan There are s 2 − s 3 s_{2}-s_{3} s2−s3 individual ,…, l l l Have of order s l − 1 − s l s_{l-1}-s_{l} sl−1−sl individual
边栏推荐
猜你喜欢
随机推荐
Advanced network accounting notes (IV)
Tutorial on installing SSL certificates in Microsoft Exchange Server 2007
A review of comparative learning
Jerry's DAC output mode setting [chapter]
杰理之播 MP3 提示音功能【篇】
可编程全功能速率限制器设计硬件交换机
Docker搭建redis集群
杰理之DAC 输出方式设置【篇】
一、摘要和简介
golang set type implementation
【One by One系列】IdentityServer4(七)授权码流程原理之MVC
指标(复杂指标)定义和模型
Revelation: Bezos' business logic and leadership rules
Definition and model of indicators (complex indicators)
函数的定义和函数的参数
浏览器跨域
DataEase模板市场正式发布
halcon知识:区域(Region)上的轮廓算子(1)
高级计网笔记(七)
Why create a public OKR?








