当前位置:网站首页>Google Earth engine (GEE) - Murray global tidal wetland change V1 (1999-2019) data set
Google Earth engine (GEE) - Murray global tidal wetland change V1 (1999-2019) data set
2022-06-30 06:52:00 【This star is bright】
The Murray Global Tidal Wetland Change Dataset contains maps of the global extent of tidal wetlands and their change. The maps were developed from a three stage classification that sought to (i) estimate the global distribution of tidal wetlands (defined as either tidal marsh, tidal flat or mangrove ecosystems), (ii) detect their change over the study period, and (iii) estimate the ecosystem type and timing of tidal wetland change events.
The dataset was produced by combining observations from 1,166,385 satellite images acquired by Landsat 5 to 8 with environmental data of variables known to influence the distributions of each ecosystem type, including temperature, slope, and elevation. The image contains bands for a tidal wetland extent product (random forest probability of tidal wetland occurrence) for the start and end time-steps of the study period and a tidal wetland change product over the full study period (loss and gain of tidal wetlands).
Please see the usage notes on the project website. A full description of the methods, validation, and limitations of the data produced by this software is available in the associated scientific paper.
See also UQ/murray/Intertidal/v1_1/global_intertidal for global maps of the distribution of tidal flat ecosystems.
The Murray global tidal wetland change data set contains a map of the global tidal wetland range and its changes . These maps are developed according to three-stage classification , Aimed at (i) Estimate tidal wetlands ( It is defined as tidal swamp 、 Tidal flat or mangrove ecosystem ) Global distribution of ,(ii) Detect their changes during the study , as well as (iii) ) Estimate the ecosystem type and time of tidal wetland change events .
This data set is created by adding Landsat 5 To 8 Acquired 1,166,385 Observations from satellite images and environmental data on variables known to affect the distribution of each ecosystem type ( Including temperature 、 Slope and altitude ) Combined to produce . This image contains tidal wetland range products at the beginning and end time steps of the study period ( Random forest probability of tidal wetland occurrence ) And the wave band of tidal wetland change products throughout the study period ( Loss and gain of tidal wetlands ) .
see also Project website Upper Instructions . Relevant scientific papers provide methods for data generated by the software 、 A complete description of the validation and limitations .
See also UQ/murray/Intertidal/v1_1/global_intertidal Understand the global tidal flat ecosystem distribution map .
Dataset availability
1999-01-01T00:00:00Z - 2019-12-31T00:00:00
Data set provider
Earth engine
ee.ImageCollection("JCU/Murray/GIC/global_tidal_wetland_change/2019"
The resolution of the
30 rice
Band
| full name | describe |
|---|---|
loss | Set the missing location to 1, Otherwise it will be shielded . |
lossYear | An integer representing the end year of the loss analysis time step ( for example ,19 = 2017-2019). |
lossType | The type of loss
|
gain | The gain position is set to 1, Otherwise it will be shielded . |
gainYear | An integer representing the end year of the gain analysis time step ( for example ,19 = 2017-2019). |
gainType | Gain type :
|
twprobabilityStart | The first time step (1999-2001) Random forest protocol for total tidal wetlands .0 To 100 Integer between . |
twprobabilityEnd | Last time step (2017-2019) Random forest protocol for the overall tidal wetland category .0 To 100 Integer between . |
Code :
var dataset = ee.Image('JCU/Murray/GIC/global_tidal_wetland_change/2019');
Map.setCenter(103.7, 1.3, 12);
Map.setOptions('SATELLITE');
var plasma = [
'0d0887', '3d049b', '6903a5', '8d0fa1', 'ae2891', 'cb4679', 'df6363',
'f0844c', 'faa638', 'fbcc27', 'f0f921'
];
Map.addLayer(
dataset.select('twprobabilityStart'), {palette: plasma, min: 0, max: 100},
'twprobabilityStart', false, 1);
Map.addLayer(
dataset.select('twprobabilityEnd'), {palette: plasma, min: 0, max: 100},
'twprobabilityEnd', false, 1);
var lossPalette = ['FE4A49'];
var gainPalette = ['2AB7CA'];
Map.addLayer(
dataset.select('loss'), {palette: lossPalette, min: 1, max: 1},
'Tidal wetland loss', true, 1);
Map.addLayer(
dataset.select('gain'), {palette: gainPalette, min: 1, max: 1},
'Tidal wetland gain', true, 1);
var viridis = ['440154', '414487', '2a788e', '22a884', '7ad151', 'fde725'];
Map.addLayer(
dataset.select('lossYear'), {palette: viridis, min: 4, max: 19},
'Year of loss', false, 0.9);
Map.addLayer(
dataset.select('gainYear'), {palette: viridis, min: 4, max: 19},
'Year of gain', false, 0.9);
// ecosystem type
var classPalette = ['9e9d9d', 'ededed', 'FF9900', '009966', '960000', '006699'];
var classNames =
['null', 'null', 'Tidal flat', 'Mangrove', 'null', 'Tidal marsh'];
Map.addLayer(
dataset.select('lossType'), {palette: classPalette, min: 0, max: 5},
'Loss type', false, 0.9);
Map.addLayer(
dataset.select('gainType'), {palette: classPalette, min: 0, max: 5},
'Gain type', false, 0.9);Terms of Use
CC-BY-4.0
Citations:
Murray, N.J., Worthington, T.A., Bunting, P., Duce, S., Hagger, V., Lovelock, C.E., Lucas, R., Saunders, M.I., Sheaves, M., Spalding, M., Waltham, N.J., Lyons, M.B., 2022. High-resolution mapping of losses and gains of Earth's tidal wetlands. Science. doi:10.1126/science.abm9583


边栏推荐
- 基础刷题(一)
- Porting RT thread to s5p4418 (II): dynamic memory management
- C # - C # process and convert pixeldata of CT images with fo DICOM
- Force buckle ------ replace blank space
- 1.8 - 多级存储
- RT thread migration to s5p4418 (I): scheduler
- 【我的OpenGL学习进阶之旅】关于OpenGL的着色器的向量和矩阵分类的访问方式: xyzw/rgba/stpq以及数组下标
- [transfer] analysis of memory structure, cache and DMA architecture
- SOC项目AHB_SD_HOST控制器设计
- Authority management system
猜你喜欢

1.6 - CPU composition

原理:WebMvcConfigurer 与 WebMvcConfigurationSupport避坑指南

Record one time of Tencent Test Development Engineer's automation interface test practice experience

ROS system problem: rosdep init

SOC_AHB_SD_IF

File Transfer Protocol,FTP文件共享服务器

RT thread Kernel Implementation (V): timer

深度学习---三好学生各成绩所占权重问题(3)

1.4 - fixed and floating point numbers

1.6 - CPU组成
随机推荐
[fuzzy neural network] mobile robot path planning based on Fuzzy Neural Network
我开户后把账号忘记了咋办?股票在网上开户安全吗?
Arrangement of in-depth learning materials
【模糊神经网络】基于模糊神经网络的移动机器人路径规划
oracle
File Transfer Protocol,FTP文件共享服务器
CPU到底是怎么识别代码的?
Use of sscanf function
阿里云买的40G高效云盘挂载只有20G
Records of problems solved (continuously updated)
Collection and method of traversing collection elements (1)
Improve simulation speed during ROS and Px4 joint simulation
Redis cache
List in set (2)
经纬恒润再次荣获PACCAR集团 10PPM 质量奖
ROS-URDF
六,购物⻋与订单
1.4 - 定点数与浮点数
Numpy中的四个小技巧
It turns out that you are such an array. You have finally learned