当前位置:网站首页>2022 Hangzhou Electric Power Multi-School Session 6 1008.Shinobu Loves Segment Tree Regular Questions
2022 Hangzhou Electric Power Multi-School Session 6 1008.Shinobu Loves Segment Tree Regular Questions
2022-08-05 10:17:00 【HeartFireY】
题目分析
The time complexity of solving this problem O ( T log n ) O(T\log n) O(Tlogn),标程 O ( T log 2 n ) O(T \log^2 n) O(Tlog2n)
Find each node in order b u i l d build buildThe regularity of the resulting addition sequence:(若干个 1 1 1)+(same number 2 , 3 , 4... 2,3,4... 2,3,4...)+(several identical numbers),Then find the plus 2 , 3 , 4 , . . . 2,3,4,... 2,3,4,...The number of times is related to the number of layer nodes.即为加 2 ⌊ l o g 2 x ⌋ 2^{ {\lfloor log_2{x} \rfloor}} 2⌊log2x⌋次 2 , 3 , 4 , … 2,3,4,\dots 2,3,4,….
This rule can be passed 1. 1. 1.Analyze the segment tree b u i l d build build性质 2. 2. 2.暴力打表(牛逼) 发现
Then we can write the formula:Suppose the addition sequence length is s i z siz siz,加 1 1 1的个数为 c n t 1 cnt_1 cnt1,那么该节点 r t rt rtThe sum of can be expressed as :
c n t 1 + ( ( ( s i z − c n t 1 ) ( 2 ⌊ l o g 2 x ⌋ ) + 1 ) × ( ( s i z − c n t 1 ) ( 2 ⌊ l o g 2 x ⌋ ) + 2 ) 2 − 1 ) × 2 ⌊ l o g 2 x ⌋ + [ ( s i z − c n t 1 ) m o d ( 2 ⌊ l o g 2 x ⌋ ) ) ] × ( ( s i z − c n t 1 ) ( 2 ⌊ l o g 2 x ⌋ ) + 2 ) cnt_1 + (\frac{(\frac{(siz - cnt1)}{(2^{ {\lfloor log_2{x} \rfloor}})} + 1) \times (\frac{(siz - cnt1)}{(2^{ {\lfloor log_2{x} \rfloor}})} + 2)}{2} - 1) \times 2^{ {\lfloor log_2{x} \rfloor}} + [(siz - cnt_1) \mod (2^{ {\lfloor log_2{x} \rfloor}}))] \times (\frac{(siz - cnt1)}{(2^{ {\lfloor log_2{x} \rfloor}})} + 2) cnt1+(2((2⌊log2x⌋)(siz−cnt1)+1)×((2⌊log2x⌋)(siz−cnt1)+2)−1)×2⌊log2x⌋+[(siz−cnt1)mod(2⌊log2x⌋))]×((2⌊log2x⌋)(siz−cnt1)+2)The number of digits to add s i z siz siz的规律,对于当前节点 r t rt rt:
- ⌈ ( r t − 2 ⌊ l o g 2 r t ⌋ ) / 2 ⌉ m o d 2 = = 1 , s i z − = 2 ⌊ l o g 2 r t ⌋ − 2 \lceil(rt - 2^{\lfloor log_2{rt} \rfloor}) / 2 \rceil \mod2 == 1, siz -= 2^{\lfloor log_2{rt} \rfloor - 2} ⌈(rt−2⌊log2rt⌋)/2⌉mod2==1,siz−=2⌊log2rt⌋−2
- ⌈ ( r t − 2 ⌊ l o g 2 r t ⌋ ) / 2 ⌉ m o d 2 = = 0 , s i z − = 2 ⌊ l o g 2 r t ⌋ − 1 \lceil(rt - 2^{\lfloor log_2{rt} \rfloor}) / 2 \rceil \mod2 == 0, siz -= 2^{\lfloor log_2{rt} \rfloor - 1} ⌈(rt−2⌊log2rt⌋)/2⌉mod2==0,siz−=2⌊log2rt⌋−1
求 s i z siz siz时,可以令 s i z = n siz = n siz=n,Then follow the path up the tree(Actually corresponds to the binary digit of the number)向上走,Then subtract the value corresponding to the current node.
1 1 1的规律:可以 O ( 1 ) O(1) O(1)求:
c n t 1 = { 2 ( ⌊ l o g 2 x ⌋ − 1 ) , ( x − 2 ⌊ l o g 2 x ⌋ + 1 ) m o d 2 = 1 2 ⌊ l o g 2 x ⌋ , ( x − 2 ⌊ l o g 2 x ⌋ + 1 ) m o d 2 = 0 cnt_1 =\left\{\begin{matrix} 2^{({\lfloor log_2{x} \rfloor} - 1)},\ (x - 2^{ {\lfloor log_2{x} \rfloor}} + 1) \mod 2 =1 \\ 2^{ {\lfloor log_2{x} \rfloor}},\ (x - 2^{ {\lfloor log_2{x} \rfloor}} + 1) \mod 2 = 0 \end{matrix}\right. cnt1={ 2(⌊log2x⌋−1), (x−2⌊log2x⌋+1)mod2=12⌊log2x⌋, (x−2⌊log2x⌋+1)mod2=0注意,当 s i z < 0 siz < 0 siz<0时,特判输出 0 0 0,Ask for the first level s i z siz sizIt is also necessary to make special judgments to avoid overflow.同时对 n = 1 n = 1 n=1的 4 4 4A special case is also required,避免溢出.
Code
#include <bits/stdc++.h>
#pragma gcc optimize("O2")
#pragma g++ optimize("O2")
#define int long long
#define endl '\n'
using namespace std;
const int N = 2e5 + 10, MOD = 1e9 + 7;
inline void solve(){
int n = 0, x = 0; cin >> n >> x;
if(n == 1 && x == 1){
cout << 1 << endl; return; }
else if(n == 1 && x != 1){
cout << 0 << endl; return; }
if(x == 1){
cout << (n * (n + 1) / 2) << endl; return; }
//cout << "FUCK:" << get_range(x) << endl;
//if(x > get_range(x)){ cout << 0 << endl; return; }
int ceng = log2(x), ceng_fir = (1 << (ceng));
int cnt1 = ((x - ceng_fir + 1) % 2) ? (1 << (ceng - 1)) : ceng_fir;
if((x - ceng_fir + 1) == 0) cnt1 = ceng_fir;
// cnt_1 -> 1的个数
int siz = n;
int rt = x;
while(rt != 2 && rt != 3){
// cout << rt << " BEF | ";
int ceng_now = log2(rt) + 1, ser = rt - (1 << (ceng_now - 1)) + 1;
int md = ser % 4;
if(md == 1 || md == 2) siz -= (1 << (ceng_now - 3));
if(md == 3 || md == 0) siz -= (1 << (ceng_now - 2));
rt >>= 1;
// cout << rt << " AFT " << endl;
// cout << siz << endl;
}
if(rt != 1) siz -= 1;
if(siz <= 0){
cout << 0 << endl;
return;
}
if(siz <= cnt1){
cout << siz << endl;
return;
}
int yu = (siz - cnt1) % (ceng_fir), m = (siz - cnt1) / (ceng_fir);
int ans = yu * (m + 2) + cnt1 + ceng_fir * ((m + 1) * (m + 2) / 2 - 1);
cout << ans << endl;
}
signed main(){
ios_base::sync_with_stdio(false), cin.tie(0);
cout << fixed << setprecision(12);
int t = 1; cin >> t;
while(t--) solve();
return 0;
}
边栏推荐
- IDEA performs the Test operation, resulting in duplicate data when data is inserted
- 基于MindSpore高效完成图像分割,实现Dice!
- 为什么sys_class 里显示的很多表的 RELTABLESPACE 值为 0 ?
- 蚁剑webshell动态加密连接分析与实践
- Egg framework usage (1)
- Four years of weight loss record
- three.js调试工具dat.gui使用
- How can project cost control help project success?
- How does the official account operate and maintain?Public account operation and maintenance professional team
- 2022 Huashu Cup Mathematical Modeling Ideas Analysis and Exchange
猜你喜欢
Data Middle Office Construction (10): Data Security Management
JS逆向入门学习之回收商网,手机号码简易加密解析
Keil升级到AC6后,到底有哪些变化?
华为轻量级神经网络架构GhostNet再升级,GPU上大显身手的G-GhostNet(IJCV22)
[强网杯2022]WP-UM
一文道清什么是SPL
Which big guy has the 11G GI and ojvm patches in April or January 2020, please help?
创建一个 Dapp,为什么要选择波卡?
Jenkins manual (2) - software configuration
The founder of the DFINITY Foundation talks about the ups and downs of the bear market, and where should DeFi projects go?
随机推荐
首次去中心化抢劫?近2亿美元损失:跨链桥Nomad 被攻击事件分析
QSS 选择器
Still looking for a network backup resources?Hurry up to collect the following network backup resource search artifact it is worth collecting!
ffmpeg drawtext add text watermark
[Office] Collection of Microsoft Office download addresses (offline installation and download of Microsoft's official original version)
First Decentralized Heist?Loss of nearly 200 million US dollars: analysis of the attack on the cross-chain bridge Nomad
Pytorch Deep Learning Quick Start Tutorial -- Mound Tutorial Notes (3)
Is digital transformation a business buy-in?
【MindSpore Easy-Diantong Robot-01】You may have seen many knowledge quiz robots, but this one is a bit different
什么是CRM决策分析管理?
Getting started with Polkadot parachain development, this article is enough
MySQL data view
基于MindSpore高效完成图像分割,实现Dice!
2022 Huashu Cup Mathematical Modeling Question A Optimization Design Ideas for Ring Oscillators Code Sharing
Huawei's lightweight neural network architecture GhostNet has been upgraded again, and G-GhostNet (IJCV22) has shown its talents on the GPU
19. Server-side session technology Session
攻防世界-PWN-new_easypwn
linux下oracle常见操作以及日常积累知识点(函数、定时任务)
Offensive World-PWN-new_easypwn
Tanabata romantic date without overtime, RPA robot helps you get the job done