当前位置:网站首页>20211108 differential tracker
20211108 differential tracker
2022-06-13 09:03:00 【What's my name】
Differential tracker
lemma 1. set up z ( t ) z(t) z(t) yes [ 0 , ∞ ) [0, \infty) [0,∞) Continuous functions on , And lim t → ∞ z ( t ) = 0 , \lim _{t \rightarrow \infty} z(t)=0, t→∞limz(t)=0, If order x ( t ) = z ( R t ) , R > 0 x(t)=z(Rt), R>0 x(t)=z(Rt),R>0 For any given T > 0 T>0 T>0, Yes lim R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt=0. R→∞lim∫0T∣x(t)∣dt=0.
prove :
lim R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = lim R → ∞ ∫ 0 T ∣ z ( R t ) ∣ d t = lim R → ∞ 1 R ∫ 0 T ∣ z ( R t ) ∣ d R t = lim R → ∞ 1 R ∫ 0 R T ∣ z ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt =\lim _{R \rightarrow \infty} \int_{0}^{T}|z(Rt)| dt =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{T}|z(Rt)| d{Rt} =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{RT}|z(t)| d{t}=0. R→∞lim∫0T∣x(t)∣dt=R→∞lim∫0T∣z(Rt)∣dt=R→∞limR1∫0T∣z(Rt)∣dRt=R→∞limR1∫0RT∣z(t)∣dt=0.
According to lemma 1 And transformation :
{ s = t R x 1 ( s ) = z 1 ( t ) + c x 2 ( s ) = R z 2 ( t ) \left\{\begin{array}{l} s=\frac{t}{R} \\ x_{1}(s)=z_{1}(t)+c \\ x_{2}(s)=R z_{2}(t) \end{array}\right. ⎩⎨⎧s=Rtx1(s)=z1(t)+cx2(s)=Rz2(t)
lemma 2. If system { z ˙ 1 = z 2 , z ˙ 2 = f ( z 1 , z 2 ) \left\{\begin{array}{l} \dot{ {z}}_{1}=z_{2}, \\ \dot{z}_{2}=f\left(z_{1}, z_{2}\right) \end{array}\right. { z˙1=z2,z˙2=f(z1,z2) The arbitrary solution of satisfies : z 1 ( t ) → 0 , z 2 ( t ) → 0 ( t → ∞ ) z_{1}(t) \rightarrow 0, z_{2}(t) \rightarrow 0 (t \rightarrow \infty) z1(t)→0,z2(t)→0(t→∞), Then for any fixed constant c c c, System { x ˙ 1 = x 2 x ˙ 2 = R 2 f ( x 1 − c , x 2 R ) \left\{\begin{array}{l} \dot{x}_{1}=x_{2} \\ \dot{x}_{2}=R^{2} f\left(x_{1}-c, \frac{x_{2}}{R}\right) \end{array}\right. { x˙1=x2x˙2=R2f(x1−c,Rx2) Solution x 1 ( t ) x_{1}(t) x1(t) For any T > 0 T>0 T>0, Yes
lim R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 R→∞lim∫0T∣x1(t)−c∣dt=0
prove :
d x 1 ( s ) d s = d z 1 ( t ) d t R = R z ˙ 1 ( t ) = R z 2 ( t ) = x 2 ( s ) \frac{\mathrm{d} x_1(s)}{\mathrm{d} s} = \frac{\mathrm{d} z_1(t)}{\mathrm{d} \frac{t}{R}}=R\dot z_1(t)=R z_2(t) = x_2(s) dsdx1(s)=dRtdz1(t)=Rz˙1(t)=Rz2(t)=x2(s)
d x 2 ( s ) d s = R d z 2 ( t ) d t R = R 2 z ˙ 2 ( t ) = R 2 f ( z 1 , z 2 ) = R 2 f ( x 1 ( s ) − c , x 2 ( s ) R ) \frac{\mathrm{d} x_2(s)}{\mathrm{d} s} = \frac{R\mathrm{d} z_2(t)}{\mathrm{d} \frac{t}{R}}=R^2\dot z_2(t) =R^2 f\left(z_{1}, z_{2}\right) = R^2 f\left(x_{1}(s)-c, \frac{x_{2}(s)}{R}\right) dsdx2(s)=dRtRdz2(t)=R2z˙2(t)=R2f(z1,z2)=R2f(x1(s)−c,Rx2(s))
therefore , The system equivalence transformation holds .
meanwhile , Because there is z 1 ( t ) → 0 When t → ∞ z_1(t) \rightarrow 0 When t \rightarrow \infty z1(t)→0 When t→∞, And z 1 ( t ) z_1(t) z1(t) Derivable
lim R → ∞ ∫ 0 T ∣ z 1 ( t ) ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|z_{1}(t)\right| d t=0 R→∞lim∫0T∣z1(t)∣dt=0
You can get
lim R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 R→∞lim∫0T∣x1(t)−c∣dt=0
reference :https://wenku.baidu.com/view/e1ed0cf8aef8941ea76e05e9.html
边栏推荐
- 20220606 关于矩阵的Young不等式
- Object array de encapsulation
- 共享模型之不可变
- CentOS installing MySQL and setting up remote access
- Implement authentication code login and remember password (cookie)
- 20211115 任意n阶方阵均与三角矩阵(上三角或者下三角)相似
- What exactly is Huawei cloud desktop saying when it says "smooth"?
- Subspace of 20211004 matrix
- Four kinds of hooks in deep learning
- 基于微信小程序的图书馆管理系统.rar(论文+源码)
猜你喜欢

File upload JS

如何成为白帽子黑客?我建议你从这几个阶段开始学习

final 原理

20211104 why are the traces of similar matrices the same

torch. How to calculate addmm (m, mat1, mat2)

Cesium achieves sunny, rainy, foggy, snowy and other effects

【 sécurité 】 comment devenir ingénieur de sécurité de 0 à 1 contre - attaque pour la Fondation zéro

Mapbox usage, including drawing, loading, modifying, deleting points and faces, displaying pop ups, etc

redis 模糊查询 批量删除

Docker installing MySQL local remote connection docker container MySQL
随机推荐
GBase 8a V95与V86压缩策略类比
pytorch统计模型的参数个数
Vscode plug in
图数据库Neo4j介绍
20211104 为什么矩阵的迹等于特征值之和,为什么矩阵的行列式等于特征值之积
GBase 常见网络问题及排查方法
Cesium common events, including click events, mouse events, and camera movement events
教程篇(5.0) 03. 安全策略 * FortiEDR * Fortinet 网络安全专家 NSE 5
13.inline,const,mutable,this,static
Four kinds of hooks in deep learning
20211028 Stabilizability
Two good kids
Animation through svg
redis 模糊查询 批量删除
QObject::connect: Cannot queue arguments of type ‘QTextCursor‘ (Make sure ‘QTextCursor‘ is registere
QML compilation specification
GBase 8a磁盘问题及处理
How to save the video of wechat video number locally?
20211006 积分、微分、投影均属于线性变换
Pytorch model tuning - only some layers of the pre training model are loaded