当前位置:网站首页>20211108 differential tracker
20211108 differential tracker
2022-06-13 09:03:00 【What's my name】
Differential tracker
lemma 1. set up z ( t ) z(t) z(t) yes [ 0 , ∞ ) [0, \infty) [0,∞) Continuous functions on , And lim t → ∞ z ( t ) = 0 , \lim _{t \rightarrow \infty} z(t)=0, t→∞limz(t)=0, If order x ( t ) = z ( R t ) , R > 0 x(t)=z(Rt), R>0 x(t)=z(Rt),R>0 For any given T > 0 T>0 T>0, Yes lim R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt=0. R→∞lim∫0T∣x(t)∣dt=0.
prove :
lim R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = lim R → ∞ ∫ 0 T ∣ z ( R t ) ∣ d t = lim R → ∞ 1 R ∫ 0 T ∣ z ( R t ) ∣ d R t = lim R → ∞ 1 R ∫ 0 R T ∣ z ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt =\lim _{R \rightarrow \infty} \int_{0}^{T}|z(Rt)| dt =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{T}|z(Rt)| d{Rt} =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{RT}|z(t)| d{t}=0. R→∞lim∫0T∣x(t)∣dt=R→∞lim∫0T∣z(Rt)∣dt=R→∞limR1∫0T∣z(Rt)∣dRt=R→∞limR1∫0RT∣z(t)∣dt=0.
According to lemma 1 And transformation :
{ s = t R x 1 ( s ) = z 1 ( t ) + c x 2 ( s ) = R z 2 ( t ) \left\{\begin{array}{l} s=\frac{t}{R} \\ x_{1}(s)=z_{1}(t)+c \\ x_{2}(s)=R z_{2}(t) \end{array}\right. ⎩⎨⎧s=Rtx1(s)=z1(t)+cx2(s)=Rz2(t)
lemma 2. If system { z ˙ 1 = z 2 , z ˙ 2 = f ( z 1 , z 2 ) \left\{\begin{array}{l} \dot{ {z}}_{1}=z_{2}, \\ \dot{z}_{2}=f\left(z_{1}, z_{2}\right) \end{array}\right. { z˙1=z2,z˙2=f(z1,z2) The arbitrary solution of satisfies : z 1 ( t ) → 0 , z 2 ( t ) → 0 ( t → ∞ ) z_{1}(t) \rightarrow 0, z_{2}(t) \rightarrow 0 (t \rightarrow \infty) z1(t)→0,z2(t)→0(t→∞), Then for any fixed constant c c c, System { x ˙ 1 = x 2 x ˙ 2 = R 2 f ( x 1 − c , x 2 R ) \left\{\begin{array}{l} \dot{x}_{1}=x_{2} \\ \dot{x}_{2}=R^{2} f\left(x_{1}-c, \frac{x_{2}}{R}\right) \end{array}\right. { x˙1=x2x˙2=R2f(x1−c,Rx2) Solution x 1 ( t ) x_{1}(t) x1(t) For any T > 0 T>0 T>0, Yes
lim R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 R→∞lim∫0T∣x1(t)−c∣dt=0
prove :
d x 1 ( s ) d s = d z 1 ( t ) d t R = R z ˙ 1 ( t ) = R z 2 ( t ) = x 2 ( s ) \frac{\mathrm{d} x_1(s)}{\mathrm{d} s} = \frac{\mathrm{d} z_1(t)}{\mathrm{d} \frac{t}{R}}=R\dot z_1(t)=R z_2(t) = x_2(s) dsdx1(s)=dRtdz1(t)=Rz˙1(t)=Rz2(t)=x2(s)
d x 2 ( s ) d s = R d z 2 ( t ) d t R = R 2 z ˙ 2 ( t ) = R 2 f ( z 1 , z 2 ) = R 2 f ( x 1 ( s ) − c , x 2 ( s ) R ) \frac{\mathrm{d} x_2(s)}{\mathrm{d} s} = \frac{R\mathrm{d} z_2(t)}{\mathrm{d} \frac{t}{R}}=R^2\dot z_2(t) =R^2 f\left(z_{1}, z_{2}\right) = R^2 f\left(x_{1}(s)-c, \frac{x_{2}(s)}{R}\right) dsdx2(s)=dRtRdz2(t)=R2z˙2(t)=R2f(z1,z2)=R2f(x1(s)−c,Rx2(s))
therefore , The system equivalence transformation holds .
meanwhile , Because there is z 1 ( t ) → 0 When t → ∞ z_1(t) \rightarrow 0 When t \rightarrow \infty z1(t)→0 When t→∞, And z 1 ( t ) z_1(t) z1(t) Derivable
lim R → ∞ ∫ 0 T ∣ z 1 ( t ) ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|z_{1}(t)\right| d t=0 R→∞lim∫0T∣z1(t)∣dt=0
You can get
lim R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 R→∞lim∫0T∣x1(t)−c∣dt=0
reference :https://wenku.baidu.com/view/e1ed0cf8aef8941ea76e05e9.html
边栏推荐
- 20211104 为什么相似矩阵的迹相同
- transforms. ColorJitter(0.3, 0, 0, 0)
- Drill down to protobuf - Introduction
- 20211108 det(AB)=det(A)det(B)
- Map 23 summary
- 【安全】零基础如何从0到1逆袭成为安全工程师
- GBase 8a磁盘问题及处理
- Implement authentication code login and remember password (cookie)
- QObject::connect: Cannot queue arguments of type ‘QTextCursor‘ (Make sure ‘QTextCursor‘ is registere
- 14. class initialization, default constructor, =default
猜你喜欢
[network security penetration] if you don't understand CSRF? This article gives you a thorough grasp
CentOS installing MySQL and setting up remote access
redis
transforms. ColorJitter(0.3, 0, 0, 0)
Top+jstack to analyze the causes of excessive CPU
Basic use of cesium, including loading images, terrain, models, vector data, etc
【 sécurité 】 comment devenir ingénieur de sécurité de 0 à 1 contre - attaque pour la Fondation zéro
an error occurred while trying to rename a file in the destination directory code 5
教程篇(5.0) 01. 产品简介及安装 * FortiEDR * Fortinet 网络安全专家 NSE 5
5. Attribute selector
随机推荐
20211104 为什么相似矩阵的迹相同
你不知道的stringstream的用法
Cesium displays a pop-up box at the specified position and moves with the map
20211104 why are the traces of similar matrices the same
13.inline,const,mutable,this,static
GBase 常见网络问题及排查方法
Animation through svg
Margin:0 reason why auto does not take effect
银行理财产品有哪些?清算期是多长?
Neo4j environment construction
[QNX hypervisor 2.2 user manual] 4.5.1 build QNX guest
Is it safe to open an account online? Can a novice open an account?
4. Relationship selector (parent-child relationship, ancestor offspring relationship, brother relationship)
GBase 8a V95与V86压缩策略类比
国债逆回购能开户吗,国债逆回购在APP上可以直接开通券商安全吗 ,买股票怎么网上开户
Knowledge points related to system architecture 1
PHP wechat special merchant incoming V3 packaging interface
pytorch相同结构不同参数名模型加载权重
Neo4j Environment Building
20211108 微分跟踪器