当前位置:网站首页>20211108 differential tracker

20211108 differential tracker

2022-06-13 09:03:00 What's my name

Differential tracker

lemma 1. set up z ( t ) z(t) z(t) yes [ 0 , ∞ ) [0, \infty) [0,) Continuous functions on , And lim ⁡ t → ∞ z ( t ) = 0 , \lim _{t \rightarrow \infty} z(t)=0, tlimz(t)=0, If order x ( t ) = z ( R t ) , R > 0 x(t)=z(Rt), R>0 x(t)=z(Rt),R>0 For any given T > 0 T>0 T>0, Yes lim ⁡ R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt=0. Rlim0Tx(t)dt=0.

prove
lim ⁡ R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = lim ⁡ R → ∞ ∫ 0 T ∣ z ( R t ) ∣ d t = lim ⁡ R → ∞ 1 R ∫ 0 T ∣ z ( R t ) ∣ d R t = lim ⁡ R → ∞ 1 R ∫ 0 R T ∣ z ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt =\lim _{R \rightarrow \infty} \int_{0}^{T}|z(Rt)| dt =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{T}|z(Rt)| d{Rt} =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{RT}|z(t)| d{t}=0. Rlim0Tx(t)dt=Rlim0Tz(Rt)dt=RlimR10Tz(Rt)dRt=RlimR10RTz(t)dt=0.

According to lemma 1 And transformation :
{ s = t R x 1 ( s ) = z 1 ( t ) + c x 2 ( s ) = R z 2 ( t ) \left\{\begin{array}{l} s=\frac{t}{R} \\ x_{1}(s)=z_{1}(t)+c \\ x_{2}(s)=R z_{2}(t) \end{array}\right. s=Rtx1(s)=z1(t)+cx2(s)=Rz2(t)

lemma 2. If system { z ˙ 1 = z 2 , z ˙ 2 = f ( z 1 , z 2 ) \left\{\begin{array}{l} \dot{ {z}}_{1}=z_{2}, \\ \dot{z}_{2}=f\left(z_{1}, z_{2}\right) \end{array}\right. { z˙1=z2,z˙2=f(z1,z2) The arbitrary solution of satisfies : z 1 ( t ) → 0 , z 2 ( t ) → 0 ( t → ∞ ) z_{1}(t) \rightarrow 0, z_{2}(t) \rightarrow 0 (t \rightarrow \infty) z1(t)0,z2(t)0(t), Then for any fixed constant c c c, System { x ˙ 1 = x 2 x ˙ 2 = R 2 f ( x 1 − c , x 2 R ) \left\{\begin{array}{l} \dot{x}_{1}=x_{2} \\ \dot{x}_{2}=R^{2} f\left(x_{1}-c, \frac{x_{2}}{R}\right) \end{array}\right. { x˙1=x2x˙2=R2f(x1c,Rx2) Solution x 1 ( t ) x_{1}(t) x1(t) For any T > 0 T>0 T>0, Yes
lim ⁡ R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 Rlim0Tx1(t)cdt=0

prove :
d x 1 ( s ) d s = d z 1 ( t ) d t R = R z ˙ 1 ( t ) = R z 2 ( t ) = x 2 ( s ) \frac{\mathrm{d} x_1(s)}{\mathrm{d} s} = \frac{\mathrm{d} z_1(t)}{\mathrm{d} \frac{t}{R}}=R\dot z_1(t)=R z_2(t) = x_2(s) dsdx1(s)=dRtdz1(t)=Rz˙1(t)=Rz2(t)=x2(s)

d x 2 ( s ) d s = R d z 2 ( t ) d t R = R 2 z ˙ 2 ( t ) = R 2 f ( z 1 , z 2 ) = R 2 f ( x 1 ( s ) − c , x 2 ( s ) R ) \frac{\mathrm{d} x_2(s)}{\mathrm{d} s} = \frac{R\mathrm{d} z_2(t)}{\mathrm{d} \frac{t}{R}}=R^2\dot z_2(t) =R^2 f\left(z_{1}, z_{2}\right) = R^2 f\left(x_{1}(s)-c, \frac{x_{2}(s)}{R}\right) dsdx2(s)=dRtRdz2(t)=R2z˙2(t)=R2f(z1,z2)=R2f(x1(s)c,Rx2(s))

therefore , The system equivalence transformation holds .

meanwhile , Because there is z 1 ( t ) → 0 When t → ∞ z_1(t) \rightarrow 0 When t \rightarrow \infty z1(t)0 When t, And z 1 ( t ) z_1(t) z1(t) Derivable

lim ⁡ R → ∞ ∫ 0 T ∣ z 1 ( t ) ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|z_{1}(t)\right| d t=0 Rlim0Tz1(t)dt=0

You can get
lim ⁡ R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 Rlim0Tx1(t)cdt=0

reference :https://wenku.baidu.com/view/e1ed0cf8aef8941ea76e05e9.html

原网站

版权声明
本文为[What's my name]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/164/202206130854529831.html