当前位置:网站首页>math_ Proving common equivalent infinitesimal & Case & substitution
math_ Proving common equivalent infinitesimal & Case & substitution
2022-06-28 19:09:00 【xuchaoxin1375】
List of articles
- Proving the common equivalent infinitesimal
- Proving the common equivalent infinitesimal
- sin ( x ) ∼ x \sin(x)\sim x sin(x)∼x
- t a n ( x ) ∼ x tan(x)\sim x tan(x)∼x
- a r c s i n ( x ) ∼ x arcsin(x)\sim x arcsin(x)∼x
- a r c t a n ( x ) ∼ x arctan(x)\sim x arctan(x)∼x
- l n ( 1 + x ) ∼ x ln(1+x)\sim x ln(1+x)∼x
- l o g a ( 1 + x ) ∼ 1 l n ( a ) x log_a(1+x)\sim \frac{1}{ln(a)}x loga(1+x)∼ln(a)1x
- e x − 1 ∼ x e^x-1\sim x ex−1∼x
- ( a x − 1 ) ∼ x ln a (a^x-1)\sim x\ln a (ax−1)∼xlna
- 1 − c o s ( x ) ∼ 1 2 x 2 1-cos(x)\sim \frac{1}{2}x^2 1−cos(x)∼21x2
- Slightly more complex equivalent infinitesimal
Proving the common equivalent infinitesimal


The latter half is less commonly used than the first part

Proving the common equivalent infinitesimal
sin ( x ) ∼ x \sin(x)\sim x sin(x)∼x
lim x → 0 s i n ( x ) x = 1 ; The first One heavy want extremely limit \lim_{x\rightarrow 0}{\frac{sin(x)}{x}}=1; The first important limit x→0limxsin(x)=1; The first One heavy want extremely limit
t a n ( x ) ∼ x tan(x)\sim x tan(x)∼x
lim x → 0 t a n ( x ) x = 1 lim x → 0 s i n x x c o s ( x ) = lim x → 0 s i n x x 1 c o s x = lim x → 0 ( 1 ⋅ 1 c o s x ) = lim x → 0 1 lim x → 0 c o s ( x ) = 1 \\ \lim_{x\rightarrow 0}{\frac{tan(x)}{x}}=1 \\ \lim_{x\rightarrow 0}{\frac{sinx}{xcos(x)}} =\lim_{x\rightarrow0}{\frac{sinx}{x}\frac{1}{cosx}} =\lim_{x\rightarrow0}{(1\cdot\frac{1}{cosx})} =\frac{\lim\limits_{x\rightarrow0}{1}}{\lim\limits_{x\rightarrow0}cos(x)}=1 x→0limxtan(x)=1x→0limxcos(x)sinx=x→0limxsinxcosx1=x→0lim(1⋅cosx1)=x→0limcos(x)x→0lim1=1
a r c s i n ( x ) ∼ x arcsin(x)\sim x arcsin(x)∼x
Make t = a r c s i n ( x ) , x = s i n ( t ) , t → 0 ( x → 0 ) lim x → 0 a r c s i n ( x ) x = lim t → 0 t s i n ( t ) = 1 Make t=arcsin(x),x=sin(t),t\rightarrow0(x\rightarrow 0) \\ \lim_{x\rightarrow0}{\frac{arcsin(x)}{x}} =\lim_{t\rightarrow0}{\frac{t}{sin(t)}}=1 Make t=arcsin(x),x=sin(t),t→0(x→0)x→0limxarcsin(x)=t→0limsin(t)t=1
a r c t a n ( x ) ∼ x arctan(x)\sim x arctan(x)∼x
lim x → 0 a r c t a n ( x ) x = 1 Make t = a r c t a n ( x ) , x = t a n ( t ) ; ⇒ lim x → 0 a r c t a n ( x ) x = lim t → 0 t t a n ( t ) = 1 \lim_{x\rightarrow 0}{\frac{arctan(x)}{x}}=1 \\ \\ Make t=arctan(x), \\x=tan(t); \\\Rightarrow \lim_{x\rightarrow 0}{\frac{arctan(x)}{x}} =\lim_{t\rightarrow 0}{\frac{t}{tan(t)}}=1 x→0limxarctan(x)=1 Make t=arctan(x),x=tan(t);⇒x→0limxarctan(x)=t→0limtan(t)t=1
l n ( 1 + x ) ∼ x ln(1+x)\sim x ln(1+x)∼x
lim x → 0 l n ( 1 + x ) x = 1 benefit use Yes Count sex quality and The first Two heavy want extremely limit Prove bright lim x → 0 l n ( 1 + x ) x = lim x → 0 1 x l n ( 1 + x ) = lim x → 0 l n ( 1 + x ) 1 x = lim x → 0 l n ( e ) = 1 \\\lim_{x\rightarrow 0}{\frac{ln(1+x)}{x}}=1 \\ Using the logarithmic property and the second important limit to prove \\ \lim_{x\rightarrow 0}{\frac{ln(1+x)}{x}} =\lim_{x\rightarrow 0}{\frac{1}{x}{ln(1+x)}} =\lim_{x\rightarrow 0}{ln(1+x)^\frac{1}{x}} =\lim_{x\rightarrow0}ln(e)=1 x→0limxln(1+x)=1 benefit use Yes Count sex quality and The first Two heavy want extremely limit Prove bright x→0limxln(1+x)=x→0limx1ln(1+x)=x→0limln(1+x)x1=x→0limln(e)=1
l o g a ( 1 + x ) ∼ 1 l n ( a ) x log_a(1+x)\sim \frac{1}{ln(a)}x loga(1+x)∼ln(a)1x
more One like Of , can Yes lim x → 0 l o g a ( 1 + x ) 1 l n ( a ) x = 1 root According to the in At the end of Male type ( c h a n g e b a s e ) log a e = l n ( e ) l n ( a ) = 1 l n ( a ) lim x → 0 l o g a ( 1 + x ) x = lim x → 0 1 x l o g a ( 1 + x ) = lim x → 0 l o g a ( ( 1 + x ) 1 x ) = l o g a ( e ) = 1 l n ( a ) ∴ l o g a ( 1 + x ) ∼ 1 l n ( a ) x A more general , Can have \lim_{x\rightarrow0}{\frac{log_a(1+x)}{\frac{1}{ln(a)}x}}=1 \\ According to the bottom formula (change\ base) \\\log_{a}{e}=\frac{ln{(e)}}{ln(a)}=\frac{1}{ln(a)} \\ \lim_{x\rightarrow0}{\frac{log_a(1+x)}{x}} =\lim_{x\rightarrow 0}\frac{1}{x}{log_a{(1+x)}} =\lim_{x\rightarrow0}log_a((1+x)^{\frac{1}{x}})=log_a(e)=\frac{1}{ln(a)} \\\therefore log_a(1+x)\sim \frac{1}{ln(a)}x more One like Of , can Yes x→0limln(a)1xloga(1+x)=1 root According to the in At the end of Male type (change base)logae=ln(a)ln(e)=ln(a)1x→0limxloga(1+x)=x→0limx1loga(1+x)=x→0limloga((1+x)x1)=loga(e)=ln(a)1∴loga(1+x)∼ln(a)1x
e x − 1 ∼ x e^x-1\sim x ex−1∼x
lim x → 0 e x − 1 x = 1 in element Law : Make t = e x − 1 ; t = ( e x − 1 ) → 0 ( x → 0 ) namely , Yes lim x → 0 x = lim t → 0 t = 0 be x = l n ( t + 1 ) lim x → 0 e x − 1 x = lim t → 0 t l n ( t + 1 ) = 1 e x − 1 ∼ x \lim_{x\rightarrow 0}{\frac{e^x-1}{x}}=1 \\ Exchange method : Make t=e^x-1; \\t=(e^x-1)\rightarrow0(x\rightarrow0) namely , Yes \lim_{x\rightarrow0}{x}=\lim_{t\rightarrow 0}{t}=0 \\ be x=ln(t+1) \\ \lim_{x\rightarrow0}{\frac{e^x-1}{x}} =\lim_{t\rightarrow0}{\frac{t}{ln{(t+1)}}}=1 \\ e^x-1\sim x x→0limxex−1=1 in element Law : Make t=ex−1;t=(ex−1)→0(x→0) namely , Yes x→0limx=t→0limt=0 be x=ln(t+1)x→0limxex−1=t→0limln(t+1)t=1ex−1∼x
( a x − 1 ) ∼ x ln a (a^x-1)\sim x\ln a (ax−1)∼xlna
A more general , Can have
( a x − 1 ) ∼ x ln a o r i g i n a l = lim x → 0 a x − 1 x ln a Make t = a x − 1 ; t → 0 ( x → 0 ) ; x = l o g a ( t + 1 ) l o g a ( 1 + t ) ∼ 1 l n ( a ) t o r i g i n a l = lim t → 0 t log a ( t + 1 ) = lim t → 0 t 1 ln a t = ln a ∴ ( a x − 1 ) ∼ x ln a (a^x-1)\sim x\ln a \\ original=\lim_{x\rightarrow 0}{\frac{a^x-1}{x\ln a}} \\ Make t=a^x-1; \\t\rightarrow0(x\rightarrow0); \\x=log_a(t+1) \\ log_a(1+t)\sim \frac{1}{ln(a)}t \\original=\lim_{t\rightarrow0}{\frac{t}{\log_a(t+1)}} =\lim_{t\rightarrow 0}{\frac{t}{\frac{1}{\ln a}t}} =\ln a \\\therefore (a^x-1)\sim x\ln a (ax−1)∼xlnaoriginal=x→0limxlnaax−1 Make t=ax−1;t→0(x→0);x=loga(t+1)loga(1+t)∼ln(a)1toriginal=t→0limloga(t+1)t=t→0limlna1tt=lna∴(ax−1)∼xlna
1 − c o s ( x ) ∼ 1 2 x 2 1-cos(x)\sim \frac{1}{2}x^2 1−cos(x)∼21x2
lim x → 0 1 − c o s ( x ) 1 2 x 2 = 1 3、 ... and horn Letter Count times horn Male type c o s x = c o s 2 ( x 2 ) − s i n 2 ( x 2 ) = 1 − 2 sin 2 ( x 2 ) , ( c o s x = 2 c o s 2 ( x 2 ) − 1 ; s i n shape type more heavy want , Than a Pick up near ( Rong easy send use ) The first One heavy want extremely limit ) lim x → 0 1 − c o s ( x ) x 2 = lim x → 0 2 s i n 2 ( x 2 ) x 2 = lim x → 0 2 s i n 2 ( x 2 ) 4 ( x 2 ) 2 = lim x → 0 1 2 ( s i n ( x 2 ) x 2 ) 2 = 1 2 ∴ lim x → 0 1 − c o s ( x ) 1 2 x 2 = 1 \lim_{x\rightarrow0}{\frac{1-cos(x)}{\frac{1}{2}x^2}}=1 \\ Trigonometric function angle doubling formula cosx=cos^2(\frac{x}{2})-sin^2{(\frac{x}{2})} \\ =1-2\sin^2(\frac{x}{2}) ,(cosx=2cos^2(\frac{x}{2})-1;sin Form is more important , Close to ( Easy to use ) The first important limit ) \\ \lim_{x\rightarrow 0}{\frac{1-cos(x)}{x^2}}=\lim_{x\rightarrow0}{\frac{2sin^{2}{(\frac{x}{2})}}{x^2}} =\lim_{x\rightarrow0}{\frac{2sin^{2}{(\frac{x}{2})}}{4(\frac{x}{2})^2}} \\ =\lim_{x\rightarrow0}{\frac{1}{2}{(\frac{sin(\frac{x}{2})}{\frac{x}{2}})^2} } =\frac{1}{2} \\ \therefore \lim_{x\rightarrow0}{\frac{1-cos(x)}{\frac{1}{2}x^2}}=1 x→0lim21x21−cos(x)=1 3、 ... and horn Letter Count times horn Male type cosx=cos2(2x)−sin2(2x)=1−2sin2(2x),(cosx=2cos2(2x)−1;sin shape type more heavy want , Than a Pick up near ( Rong easy send use ) The first One heavy want extremely limit )x→0limx21−cos(x)=x→0limx22sin2(2x)=x→0lim4(2x)22sin2(2x)=x→0lim21(2xsin(2x))2=21∴x→0lim21x21−cos(x)=1
Slightly more complex equivalent infinitesimal
( 1 + x ) a − 1 ∼ a x (1+x)^a-1\sim ax (1+x)a−1∼ax
- Replace the two equivalent infinitesimals proved above , To prove a slightly more complex equivalent infinitesimal
According to the meaning of logarithm & nature :
a l o g a b = b l n x n = n ⋅ l n ( x ) ( 1 + x ) a = e l o g e ( 1 + x ) a = e l n ( 1 + x ) a = e a ⋅ l n ( 1 + x ) \\ a^{log_ab}=b\\ ln{x^n}=n\cdot ln(x)\\ (1+x)^a=e^{log_e{(1+x)^a}}=e^{ln{(1+x)^a}}=e^{a\cdot ln{(1+x)}} alogab=blnxn=n⋅ln(x)(1+x)a=eloge(1+x)a=eln(1+x)a=ea⋅ln(1+x)
Thus the proposition that needs to be proved becomes :
e a ⋅ l n ( 1 + x ) − 1 ∼ x or person say : ( 1 + x ) a − 1 = e a ⋅ ln ( x + 1 ) − 1 ∼ a ⋅ ln ( x + 1 ) e^{a\cdot ln{(1+x)}}-1\sim x \\ Or say : {(1+x)^a-1} =e^{a\cdot\ln(x+1)}-1\sim a\cdot\ln(x+1) ea⋅ln(1+x)−1∼x or person say :(1+x)a−1=ea⋅ln(x+1)−1∼a⋅ln(x+1)
lim x → 0 e a ⋅ l n ( 1 + x ) − 1 x * benefit use front Noodles Prove bright Of l n ( x + 1 ) ∼ x , take branch mother Into the That's ok On behalf of in ( etc. price nothing poor Small On behalf of in set The reason is ) from and have to To shape Such as another One individual etc. price nothing poor Small Of shape type : lim x → 0 e x − 1 x = 1 * or person , On behalf of in branch Son ( branch Son whole body yes operator close e x − 1 ( e x − 1 ∼ x Of shape type ) ) , this in x take value by surface reach type x = a ⋅ ln ( x + 1 ) , from and : ( 1 + x ) a − 1 = e a ⋅ ln ( x + 1 ) − 1 ∼ a ⋅ ln ( x + 1 ) present stay , lim x → 0 ( 1 + x ) a − 1 x = lim x → 0 a ⋅ ln ( x + 1 ) x = lim x → 0 a l n ( x + 1 ) x = a from and : lim x → 0 ( x + 1 ) a − 1 a x = 1 \lim_{x\rightarrow 0}{\frac{e^{a\cdot ln{(1+x)}}-1}{x}} \\\bigstar Make use of the previous proof ln(x+1)\sim x, Replace the denominator ( Equivalent Infinitesimal Substitution Theorem ) \\ So we get another equivalent infinitesimal form : \\ \lim_{x\rightarrow0}{\frac{e^x-1}{x}}=1 \\\bigstar perhaps , Substitutional molecule ( The molecular whole is consistent with e^x-1(e^x-1\sim x In the form of )), \\ here x The value is the expression x=a\cdot\ln(x+1), thus : \\ {(1+x)^a-1} =e^{a\cdot\ln(x+1)}-1\sim a\cdot\ln(x+1) \\ Now? ,\lim_{x\rightarrow 0}\frac{ {(1+x)^a-1}}{x} =\lim_{x\rightarrow 0}{\frac{a\cdot\ln(x+1)}{x}} =\lim_{x\rightarrow 0}{a\frac{ln(x+1)}{x}}=a \\ thus : \\ \lim_{x\rightarrow 0}{\frac{(x+1)^a-1}{ax}}=1 x→0limxea⋅ln(1+x)−1* benefit use front Noodles Prove bright Of ln(x+1)∼x, take branch mother Into the That's ok On behalf of in ( etc. price nothing poor Small On behalf of in set The reason is ) from and have to To shape Such as another One individual etc. price nothing poor Small Of shape type :x→0limxex−1=1* or person , On behalf of in branch Son ( branch Son whole body yes operator close ex−1(ex−1∼x Of shape type )), this in x take value by surface reach type x=a⋅ln(x+1), from and :(1+x)a−1=ea⋅ln(x+1)−1∼a⋅ln(x+1) present stay ,x→0limx(1+x)a−1=x→0limxa⋅ln(x+1)=x→0limaxln(x+1)=a from and :x→0limax(x+1)a−1=1
Or use yuan exchange + The method of matching
Make t = ( 1 + x ) a − 1 ; namely , ( 1 + x ) a = t + 1 be ln ( 1 + x ) a = ln ( t + 1 ) = lim x → 0 ( 1 + x ) a − 1 x l n ( 1 + x ) a l n ( 1 + x ) a = lim x → 0 ( 1 + x ) a − 1 x a ⋅ l n ( 1 + x ) l n ( 1 + x ) a = lim x → 0 ( 1 + x ) a − 1 l n ( 1 + x ) a a ⋅ l n ( 1 + x ) x = lim t → 0 t l n ( t + 1 ) ⋅ lim x → 0 a ⋅ l n ( 1 + x ) x = 1 × a = a Make t=(1+x)^a-1; namely ,(1+x)^a=t+1 \\ be \ln (1+x)^a=\ln (t+1) \\ =\lim_{x\rightarrow0}{\frac{(1+x)^a-1}{x}\frac{ln (1+x)^a}{ln(1+x)^a}} \\ = \lim_{x\rightarrow0}{\frac{(1+x)^a-1}{x}\frac{a\cdot ln(1+x)}{ln (1+x)^a}} \\ =\lim_{x\rightarrow0}{\frac{(1+x)^a-1}{ln(1+x)^a}\frac{a\cdot ln (1+x)}{x}} \\ =\lim_{t\rightarrow0}{\frac{t}{ln(t+1)}}\cdot \lim_{x\rightarrow0}{\frac{a\cdot ln(1+x)}{x}} \\ =1\times a=a Make t=(1+x)a−1; namely ,(1+x)a=t+1 be ln(1+x)a=ln(t+1)=x→0limx(1+x)a−1ln(1+x)aln(1+x)a=x→0limx(1+x)a−1ln(1+x)aa⋅ln(1+x)=x→0limln(1+x)a(1+x)a−1xa⋅ln(1+x)=t→0limln(t+1)t⋅x→0limxa⋅ln(1+x)=1×a=a
Comprehensive example



Comparison between compound functions and infinitesimal quantities
The equivalent infinitesimal used includes :
c o s x − 1 ∼ − 1 2 x 2 ; ( 1 − c o s x ∼ 1 2 x 2 ) s i n ( x ) ∼ x ; ( class like Of s i n ( α ( x ) ) ∼ α ( x ) ) cosx-1\sim\frac{-1}{2}x^2;(1-cosx\sim \frac{1}{2}x^2) \\ sin(x)\sim x;( Allied sin(\alpha(x))\sim\alpha(x)) cosx−1∼2−1x2;(1−cosx∼21x2)sin(x)∼x;( class like Of sin(α(x))∼α(x))
Compound functions need to consider the constraints between the definition domain of the outer function and the value domain of the inner function
In this question
root According to the etc. price nothing poor Small , lim x → 0 h ( x ) = lim x → 0 s i n ( α ( x ) ) = − 1 2 , h ( x ) = s i n ( α ( x ) ) and y = x yes x → 0 Of Same as rank nothing poor Small from and , lim x → 0 h ( x ) = 0 ∣ α ( x ) ∣ < π 2 by 了 more Add through custom Of The reason is Explain The strip Pieces of , Go to fall most Yes value have to To : − π 2 < α ( x ) < π 2 finger Out 了 Letter Count α ( x ) Of take value Fan around remember : u = α ( x ) lim x → 0 u = u 0 root According to the 3、 ... and horn sit mark single position round can know lim u → k π s i n ( u ) = lim x → 0 s i n ( α ( x ) ) = lim u → u 0 s i n ( u ) = 0 ∵ lim u → k π s i n ( u ) = 0 ∴ u 0 = k π root According to the α ( x ) Of value Domain , can know , u 0 ⩽ π 2 ∴ k = 0 ( u 0 = 0 , namely lim x → 0 α ( x ) = u 0 = 0 ) , \\ According to the equivalent infinitesimal ,\lim_{x\rightarrow0}{h(x)}=\lim_{x\rightarrow0}{sin(\alpha(x))} =-\frac{1}{2}, \\h(x)=sin(\alpha(x)) and y=x yes x\rightarrow0 Infinitesimal of the same order thus ,\lim_{x\rightarrow0}{h(x)}=0 \\|\alpha(x)|<\frac{\pi}{2} In order to understand this condition more popularly , It is absolutely worth getting rid of : \\-\frac{\pi}{2}<\alpha(x)<\frac{\pi}{2} \\ Point out the function \alpha(x) Value range of \\ remember :u=\alpha(x) \\\lim_{x\rightarrow0}{u}=u_0 \\ According to the triangle coordinate unit circle \lim_{u\rightarrow k\pi}sin(u)= \\ \lim_{x\rightarrow 0}{sin(\alpha(x))} =\lim_{u\rightarrow u_0}{sin(u)}=0 \\ \because \lim_{u\rightarrow k\pi}{sin(u)}=0 \\\therefore u_0=k\pi \\ according to \alpha(x) Range of values , You know ,u_0\leqslant\frac{\pi}{2} \\\therefore k=0 \\(u_0=0, namely \lim_{x\rightarrow 0}\alpha(x)=u_0=0), root According to the etc. price nothing poor Small ,x→0limh(x)=x→0limsin(α(x))=−21,h(x)=sin(α(x)) and y=x yes x→0 Of Same as rank nothing poor Small from and ,x→0limh(x)=0∣α(x)∣<2π by 了 more Add through custom Of The reason is Explain The strip Pieces of , Go to fall most Yes value have to To :−2π<α(x)<2π finger Out 了 Letter Count α(x) Of take value Fan around remember :u=α(x)x→0limu=u0 root According to the 3、 ... and horn sit mark single position round can know u→kπlimsin(u)=x→0limsin(α(x))=u→u0limsin(u)=0∵u→kπlimsin(u)=0∴u0=kπ root According to the α(x) Of value Domain , can know ,u0⩽2π∴k=0(u0=0, namely x→0limα(x)=u0=0),
边栏推荐
猜你喜欢

Analyzing the practical development of robot teaching

Anonymous function variable problem

向上转型和向下转型

数字化转型的1个目标,3大领域,6大因素和9个环节

释放互联网价值的 Web3

How many objects are created after new string ("hello")?

Idea merge other branches into dev branch

Steam education to break the barriers between disciplines

180.1. Log in continuously for n days (database)

新工作第一天
随机推荐
1 goal, 3 fields, 6 factors and 9 links of digital transformation
Graduation project - Design and development of restaurant management game based on unity (with source code, opening report, thesis, defense PPT, demonstration video and database)
Tensorboard Usage Summary
Idea merge other branches into dev branch
180.1. Log in continuously for n days (database)
Pipeline based hybrid rendering
Object tracking using tracker in opencv
Enhancing steam and engineering education from theory to practice
Some error prone points of C language pointer
使用Karmada实现Helm应用的跨集群部署
Windows 64位下载安装My SQL
Native implementation Net5.0+ custom log
SQL interview question: find the maximum number of consecutive login days
devpi
sql计算每日新增用户、及留存率指标
Shell script batch modify file directory permissions
找出连续7天登陆,连续30天登陆的用户
About Covariance and Correlation(协方差和相关)
Advanced technology management - how managers communicate performance and control risks
pd.cut 区间参数设定之前后区别