当前位置:网站首页>math_ Proving common equivalent infinitesimal & Case & substitution
math_ Proving common equivalent infinitesimal & Case & substitution
2022-06-28 19:09:00 【xuchaoxin1375】
List of articles
- Proving the common equivalent infinitesimal
- Proving the common equivalent infinitesimal
- sin ( x ) ∼ x \sin(x)\sim x sin(x)∼x
- t a n ( x ) ∼ x tan(x)\sim x tan(x)∼x
- a r c s i n ( x ) ∼ x arcsin(x)\sim x arcsin(x)∼x
- a r c t a n ( x ) ∼ x arctan(x)\sim x arctan(x)∼x
- l n ( 1 + x ) ∼ x ln(1+x)\sim x ln(1+x)∼x
- l o g a ( 1 + x ) ∼ 1 l n ( a ) x log_a(1+x)\sim \frac{1}{ln(a)}x loga(1+x)∼ln(a)1x
- e x − 1 ∼ x e^x-1\sim x ex−1∼x
- ( a x − 1 ) ∼ x ln a (a^x-1)\sim x\ln a (ax−1)∼xlna
- 1 − c o s ( x ) ∼ 1 2 x 2 1-cos(x)\sim \frac{1}{2}x^2 1−cos(x)∼21x2
- Slightly more complex equivalent infinitesimal
Proving the common equivalent infinitesimal


The latter half is less commonly used than the first part

Proving the common equivalent infinitesimal
sin ( x ) ∼ x \sin(x)\sim x sin(x)∼x
lim x → 0 s i n ( x ) x = 1 ; The first One heavy want extremely limit \lim_{x\rightarrow 0}{\frac{sin(x)}{x}}=1; The first important limit x→0limxsin(x)=1; The first One heavy want extremely limit
t a n ( x ) ∼ x tan(x)\sim x tan(x)∼x
lim x → 0 t a n ( x ) x = 1 lim x → 0 s i n x x c o s ( x ) = lim x → 0 s i n x x 1 c o s x = lim x → 0 ( 1 ⋅ 1 c o s x ) = lim x → 0 1 lim x → 0 c o s ( x ) = 1 \\ \lim_{x\rightarrow 0}{\frac{tan(x)}{x}}=1 \\ \lim_{x\rightarrow 0}{\frac{sinx}{xcos(x)}} =\lim_{x\rightarrow0}{\frac{sinx}{x}\frac{1}{cosx}} =\lim_{x\rightarrow0}{(1\cdot\frac{1}{cosx})} =\frac{\lim\limits_{x\rightarrow0}{1}}{\lim\limits_{x\rightarrow0}cos(x)}=1 x→0limxtan(x)=1x→0limxcos(x)sinx=x→0limxsinxcosx1=x→0lim(1⋅cosx1)=x→0limcos(x)x→0lim1=1
a r c s i n ( x ) ∼ x arcsin(x)\sim x arcsin(x)∼x
Make t = a r c s i n ( x ) , x = s i n ( t ) , t → 0 ( x → 0 ) lim x → 0 a r c s i n ( x ) x = lim t → 0 t s i n ( t ) = 1 Make t=arcsin(x),x=sin(t),t\rightarrow0(x\rightarrow 0) \\ \lim_{x\rightarrow0}{\frac{arcsin(x)}{x}} =\lim_{t\rightarrow0}{\frac{t}{sin(t)}}=1 Make t=arcsin(x),x=sin(t),t→0(x→0)x→0limxarcsin(x)=t→0limsin(t)t=1
a r c t a n ( x ) ∼ x arctan(x)\sim x arctan(x)∼x
lim x → 0 a r c t a n ( x ) x = 1 Make t = a r c t a n ( x ) , x = t a n ( t ) ; ⇒ lim x → 0 a r c t a n ( x ) x = lim t → 0 t t a n ( t ) = 1 \lim_{x\rightarrow 0}{\frac{arctan(x)}{x}}=1 \\ \\ Make t=arctan(x), \\x=tan(t); \\\Rightarrow \lim_{x\rightarrow 0}{\frac{arctan(x)}{x}} =\lim_{t\rightarrow 0}{\frac{t}{tan(t)}}=1 x→0limxarctan(x)=1 Make t=arctan(x),x=tan(t);⇒x→0limxarctan(x)=t→0limtan(t)t=1
l n ( 1 + x ) ∼ x ln(1+x)\sim x ln(1+x)∼x
lim x → 0 l n ( 1 + x ) x = 1 benefit use Yes Count sex quality and The first Two heavy want extremely limit Prove bright lim x → 0 l n ( 1 + x ) x = lim x → 0 1 x l n ( 1 + x ) = lim x → 0 l n ( 1 + x ) 1 x = lim x → 0 l n ( e ) = 1 \\\lim_{x\rightarrow 0}{\frac{ln(1+x)}{x}}=1 \\ Using the logarithmic property and the second important limit to prove \\ \lim_{x\rightarrow 0}{\frac{ln(1+x)}{x}} =\lim_{x\rightarrow 0}{\frac{1}{x}{ln(1+x)}} =\lim_{x\rightarrow 0}{ln(1+x)^\frac{1}{x}} =\lim_{x\rightarrow0}ln(e)=1 x→0limxln(1+x)=1 benefit use Yes Count sex quality and The first Two heavy want extremely limit Prove bright x→0limxln(1+x)=x→0limx1ln(1+x)=x→0limln(1+x)x1=x→0limln(e)=1
l o g a ( 1 + x ) ∼ 1 l n ( a ) x log_a(1+x)\sim \frac{1}{ln(a)}x loga(1+x)∼ln(a)1x
more One like Of , can Yes lim x → 0 l o g a ( 1 + x ) 1 l n ( a ) x = 1 root According to the in At the end of Male type ( c h a n g e b a s e ) log a e = l n ( e ) l n ( a ) = 1 l n ( a ) lim x → 0 l o g a ( 1 + x ) x = lim x → 0 1 x l o g a ( 1 + x ) = lim x → 0 l o g a ( ( 1 + x ) 1 x ) = l o g a ( e ) = 1 l n ( a ) ∴ l o g a ( 1 + x ) ∼ 1 l n ( a ) x A more general , Can have \lim_{x\rightarrow0}{\frac{log_a(1+x)}{\frac{1}{ln(a)}x}}=1 \\ According to the bottom formula (change\ base) \\\log_{a}{e}=\frac{ln{(e)}}{ln(a)}=\frac{1}{ln(a)} \\ \lim_{x\rightarrow0}{\frac{log_a(1+x)}{x}} =\lim_{x\rightarrow 0}\frac{1}{x}{log_a{(1+x)}} =\lim_{x\rightarrow0}log_a((1+x)^{\frac{1}{x}})=log_a(e)=\frac{1}{ln(a)} \\\therefore log_a(1+x)\sim \frac{1}{ln(a)}x more One like Of , can Yes x→0limln(a)1xloga(1+x)=1 root According to the in At the end of Male type (change base)logae=ln(a)ln(e)=ln(a)1x→0limxloga(1+x)=x→0limx1loga(1+x)=x→0limloga((1+x)x1)=loga(e)=ln(a)1∴loga(1+x)∼ln(a)1x
e x − 1 ∼ x e^x-1\sim x ex−1∼x
lim x → 0 e x − 1 x = 1 in element Law : Make t = e x − 1 ; t = ( e x − 1 ) → 0 ( x → 0 ) namely , Yes lim x → 0 x = lim t → 0 t = 0 be x = l n ( t + 1 ) lim x → 0 e x − 1 x = lim t → 0 t l n ( t + 1 ) = 1 e x − 1 ∼ x \lim_{x\rightarrow 0}{\frac{e^x-1}{x}}=1 \\ Exchange method : Make t=e^x-1; \\t=(e^x-1)\rightarrow0(x\rightarrow0) namely , Yes \lim_{x\rightarrow0}{x}=\lim_{t\rightarrow 0}{t}=0 \\ be x=ln(t+1) \\ \lim_{x\rightarrow0}{\frac{e^x-1}{x}} =\lim_{t\rightarrow0}{\frac{t}{ln{(t+1)}}}=1 \\ e^x-1\sim x x→0limxex−1=1 in element Law : Make t=ex−1;t=(ex−1)→0(x→0) namely , Yes x→0limx=t→0limt=0 be x=ln(t+1)x→0limxex−1=t→0limln(t+1)t=1ex−1∼x
( a x − 1 ) ∼ x ln a (a^x-1)\sim x\ln a (ax−1)∼xlna
A more general , Can have
( a x − 1 ) ∼ x ln a o r i g i n a l = lim x → 0 a x − 1 x ln a Make t = a x − 1 ; t → 0 ( x → 0 ) ; x = l o g a ( t + 1 ) l o g a ( 1 + t ) ∼ 1 l n ( a ) t o r i g i n a l = lim t → 0 t log a ( t + 1 ) = lim t → 0 t 1 ln a t = ln a ∴ ( a x − 1 ) ∼ x ln a (a^x-1)\sim x\ln a \\ original=\lim_{x\rightarrow 0}{\frac{a^x-1}{x\ln a}} \\ Make t=a^x-1; \\t\rightarrow0(x\rightarrow0); \\x=log_a(t+1) \\ log_a(1+t)\sim \frac{1}{ln(a)}t \\original=\lim_{t\rightarrow0}{\frac{t}{\log_a(t+1)}} =\lim_{t\rightarrow 0}{\frac{t}{\frac{1}{\ln a}t}} =\ln a \\\therefore (a^x-1)\sim x\ln a (ax−1)∼xlnaoriginal=x→0limxlnaax−1 Make t=ax−1;t→0(x→0);x=loga(t+1)loga(1+t)∼ln(a)1toriginal=t→0limloga(t+1)t=t→0limlna1tt=lna∴(ax−1)∼xlna
1 − c o s ( x ) ∼ 1 2 x 2 1-cos(x)\sim \frac{1}{2}x^2 1−cos(x)∼21x2
lim x → 0 1 − c o s ( x ) 1 2 x 2 = 1 3、 ... and horn Letter Count times horn Male type c o s x = c o s 2 ( x 2 ) − s i n 2 ( x 2 ) = 1 − 2 sin 2 ( x 2 ) , ( c o s x = 2 c o s 2 ( x 2 ) − 1 ; s i n shape type more heavy want , Than a Pick up near ( Rong easy send use ) The first One heavy want extremely limit ) lim x → 0 1 − c o s ( x ) x 2 = lim x → 0 2 s i n 2 ( x 2 ) x 2 = lim x → 0 2 s i n 2 ( x 2 ) 4 ( x 2 ) 2 = lim x → 0 1 2 ( s i n ( x 2 ) x 2 ) 2 = 1 2 ∴ lim x → 0 1 − c o s ( x ) 1 2 x 2 = 1 \lim_{x\rightarrow0}{\frac{1-cos(x)}{\frac{1}{2}x^2}}=1 \\ Trigonometric function angle doubling formula cosx=cos^2(\frac{x}{2})-sin^2{(\frac{x}{2})} \\ =1-2\sin^2(\frac{x}{2}) ,(cosx=2cos^2(\frac{x}{2})-1;sin Form is more important , Close to ( Easy to use ) The first important limit ) \\ \lim_{x\rightarrow 0}{\frac{1-cos(x)}{x^2}}=\lim_{x\rightarrow0}{\frac{2sin^{2}{(\frac{x}{2})}}{x^2}} =\lim_{x\rightarrow0}{\frac{2sin^{2}{(\frac{x}{2})}}{4(\frac{x}{2})^2}} \\ =\lim_{x\rightarrow0}{\frac{1}{2}{(\frac{sin(\frac{x}{2})}{\frac{x}{2}})^2} } =\frac{1}{2} \\ \therefore \lim_{x\rightarrow0}{\frac{1-cos(x)}{\frac{1}{2}x^2}}=1 x→0lim21x21−cos(x)=1 3、 ... and horn Letter Count times horn Male type cosx=cos2(2x)−sin2(2x)=1−2sin2(2x),(cosx=2cos2(2x)−1;sin shape type more heavy want , Than a Pick up near ( Rong easy send use ) The first One heavy want extremely limit )x→0limx21−cos(x)=x→0limx22sin2(2x)=x→0lim4(2x)22sin2(2x)=x→0lim21(2xsin(2x))2=21∴x→0lim21x21−cos(x)=1
Slightly more complex equivalent infinitesimal
( 1 + x ) a − 1 ∼ a x (1+x)^a-1\sim ax (1+x)a−1∼ax
- Replace the two equivalent infinitesimals proved above , To prove a slightly more complex equivalent infinitesimal
According to the meaning of logarithm & nature :
a l o g a b = b l n x n = n ⋅ l n ( x ) ( 1 + x ) a = e l o g e ( 1 + x ) a = e l n ( 1 + x ) a = e a ⋅ l n ( 1 + x ) \\ a^{log_ab}=b\\ ln{x^n}=n\cdot ln(x)\\ (1+x)^a=e^{log_e{(1+x)^a}}=e^{ln{(1+x)^a}}=e^{a\cdot ln{(1+x)}} alogab=blnxn=n⋅ln(x)(1+x)a=eloge(1+x)a=eln(1+x)a=ea⋅ln(1+x)
Thus the proposition that needs to be proved becomes :
e a ⋅ l n ( 1 + x ) − 1 ∼ x or person say : ( 1 + x ) a − 1 = e a ⋅ ln ( x + 1 ) − 1 ∼ a ⋅ ln ( x + 1 ) e^{a\cdot ln{(1+x)}}-1\sim x \\ Or say : {(1+x)^a-1} =e^{a\cdot\ln(x+1)}-1\sim a\cdot\ln(x+1) ea⋅ln(1+x)−1∼x or person say :(1+x)a−1=ea⋅ln(x+1)−1∼a⋅ln(x+1)
lim x → 0 e a ⋅ l n ( 1 + x ) − 1 x * benefit use front Noodles Prove bright Of l n ( x + 1 ) ∼ x , take branch mother Into the That's ok On behalf of in ( etc. price nothing poor Small On behalf of in set The reason is ) from and have to To shape Such as another One individual etc. price nothing poor Small Of shape type : lim x → 0 e x − 1 x = 1 * or person , On behalf of in branch Son ( branch Son whole body yes operator close e x − 1 ( e x − 1 ∼ x Of shape type ) ) , this in x take value by surface reach type x = a ⋅ ln ( x + 1 ) , from and : ( 1 + x ) a − 1 = e a ⋅ ln ( x + 1 ) − 1 ∼ a ⋅ ln ( x + 1 ) present stay , lim x → 0 ( 1 + x ) a − 1 x = lim x → 0 a ⋅ ln ( x + 1 ) x = lim x → 0 a l n ( x + 1 ) x = a from and : lim x → 0 ( x + 1 ) a − 1 a x = 1 \lim_{x\rightarrow 0}{\frac{e^{a\cdot ln{(1+x)}}-1}{x}} \\\bigstar Make use of the previous proof ln(x+1)\sim x, Replace the denominator ( Equivalent Infinitesimal Substitution Theorem ) \\ So we get another equivalent infinitesimal form : \\ \lim_{x\rightarrow0}{\frac{e^x-1}{x}}=1 \\\bigstar perhaps , Substitutional molecule ( The molecular whole is consistent with e^x-1(e^x-1\sim x In the form of )), \\ here x The value is the expression x=a\cdot\ln(x+1), thus : \\ {(1+x)^a-1} =e^{a\cdot\ln(x+1)}-1\sim a\cdot\ln(x+1) \\ Now? ,\lim_{x\rightarrow 0}\frac{ {(1+x)^a-1}}{x} =\lim_{x\rightarrow 0}{\frac{a\cdot\ln(x+1)}{x}} =\lim_{x\rightarrow 0}{a\frac{ln(x+1)}{x}}=a \\ thus : \\ \lim_{x\rightarrow 0}{\frac{(x+1)^a-1}{ax}}=1 x→0limxea⋅ln(1+x)−1* benefit use front Noodles Prove bright Of ln(x+1)∼x, take branch mother Into the That's ok On behalf of in ( etc. price nothing poor Small On behalf of in set The reason is ) from and have to To shape Such as another One individual etc. price nothing poor Small Of shape type :x→0limxex−1=1* or person , On behalf of in branch Son ( branch Son whole body yes operator close ex−1(ex−1∼x Of shape type )), this in x take value by surface reach type x=a⋅ln(x+1), from and :(1+x)a−1=ea⋅ln(x+1)−1∼a⋅ln(x+1) present stay ,x→0limx(1+x)a−1=x→0limxa⋅ln(x+1)=x→0limaxln(x+1)=a from and :x→0limax(x+1)a−1=1
Or use yuan exchange + The method of matching
Make t = ( 1 + x ) a − 1 ; namely , ( 1 + x ) a = t + 1 be ln ( 1 + x ) a = ln ( t + 1 ) = lim x → 0 ( 1 + x ) a − 1 x l n ( 1 + x ) a l n ( 1 + x ) a = lim x → 0 ( 1 + x ) a − 1 x a ⋅ l n ( 1 + x ) l n ( 1 + x ) a = lim x → 0 ( 1 + x ) a − 1 l n ( 1 + x ) a a ⋅ l n ( 1 + x ) x = lim t → 0 t l n ( t + 1 ) ⋅ lim x → 0 a ⋅ l n ( 1 + x ) x = 1 × a = a Make t=(1+x)^a-1; namely ,(1+x)^a=t+1 \\ be \ln (1+x)^a=\ln (t+1) \\ =\lim_{x\rightarrow0}{\frac{(1+x)^a-1}{x}\frac{ln (1+x)^a}{ln(1+x)^a}} \\ = \lim_{x\rightarrow0}{\frac{(1+x)^a-1}{x}\frac{a\cdot ln(1+x)}{ln (1+x)^a}} \\ =\lim_{x\rightarrow0}{\frac{(1+x)^a-1}{ln(1+x)^a}\frac{a\cdot ln (1+x)}{x}} \\ =\lim_{t\rightarrow0}{\frac{t}{ln(t+1)}}\cdot \lim_{x\rightarrow0}{\frac{a\cdot ln(1+x)}{x}} \\ =1\times a=a Make t=(1+x)a−1; namely ,(1+x)a=t+1 be ln(1+x)a=ln(t+1)=x→0limx(1+x)a−1ln(1+x)aln(1+x)a=x→0limx(1+x)a−1ln(1+x)aa⋅ln(1+x)=x→0limln(1+x)a(1+x)a−1xa⋅ln(1+x)=t→0limln(t+1)t⋅x→0limxa⋅ln(1+x)=1×a=a
Comprehensive example



Comparison between compound functions and infinitesimal quantities
The equivalent infinitesimal used includes :
c o s x − 1 ∼ − 1 2 x 2 ; ( 1 − c o s x ∼ 1 2 x 2 ) s i n ( x ) ∼ x ; ( class like Of s i n ( α ( x ) ) ∼ α ( x ) ) cosx-1\sim\frac{-1}{2}x^2;(1-cosx\sim \frac{1}{2}x^2) \\ sin(x)\sim x;( Allied sin(\alpha(x))\sim\alpha(x)) cosx−1∼2−1x2;(1−cosx∼21x2)sin(x)∼x;( class like Of sin(α(x))∼α(x))
Compound functions need to consider the constraints between the definition domain of the outer function and the value domain of the inner function
In this question
root According to the etc. price nothing poor Small , lim x → 0 h ( x ) = lim x → 0 s i n ( α ( x ) ) = − 1 2 , h ( x ) = s i n ( α ( x ) ) and y = x yes x → 0 Of Same as rank nothing poor Small from and , lim x → 0 h ( x ) = 0 ∣ α ( x ) ∣ < π 2 by 了 more Add through custom Of The reason is Explain The strip Pieces of , Go to fall most Yes value have to To : − π 2 < α ( x ) < π 2 finger Out 了 Letter Count α ( x ) Of take value Fan around remember : u = α ( x ) lim x → 0 u = u 0 root According to the 3、 ... and horn sit mark single position round can know lim u → k π s i n ( u ) = lim x → 0 s i n ( α ( x ) ) = lim u → u 0 s i n ( u ) = 0 ∵ lim u → k π s i n ( u ) = 0 ∴ u 0 = k π root According to the α ( x ) Of value Domain , can know , u 0 ⩽ π 2 ∴ k = 0 ( u 0 = 0 , namely lim x → 0 α ( x ) = u 0 = 0 ) , \\ According to the equivalent infinitesimal ,\lim_{x\rightarrow0}{h(x)}=\lim_{x\rightarrow0}{sin(\alpha(x))} =-\frac{1}{2}, \\h(x)=sin(\alpha(x)) and y=x yes x\rightarrow0 Infinitesimal of the same order thus ,\lim_{x\rightarrow0}{h(x)}=0 \\|\alpha(x)|<\frac{\pi}{2} In order to understand this condition more popularly , It is absolutely worth getting rid of : \\-\frac{\pi}{2}<\alpha(x)<\frac{\pi}{2} \\ Point out the function \alpha(x) Value range of \\ remember :u=\alpha(x) \\\lim_{x\rightarrow0}{u}=u_0 \\ According to the triangle coordinate unit circle \lim_{u\rightarrow k\pi}sin(u)= \\ \lim_{x\rightarrow 0}{sin(\alpha(x))} =\lim_{u\rightarrow u_0}{sin(u)}=0 \\ \because \lim_{u\rightarrow k\pi}{sin(u)}=0 \\\therefore u_0=k\pi \\ according to \alpha(x) Range of values , You know ,u_0\leqslant\frac{\pi}{2} \\\therefore k=0 \\(u_0=0, namely \lim_{x\rightarrow 0}\alpha(x)=u_0=0), root According to the etc. price nothing poor Small ,x→0limh(x)=x→0limsin(α(x))=−21,h(x)=sin(α(x)) and y=x yes x→0 Of Same as rank nothing poor Small from and ,x→0limh(x)=0∣α(x)∣<2π by 了 more Add through custom Of The reason is Explain The strip Pieces of , Go to fall most Yes value have to To :−2π<α(x)<2π finger Out 了 Letter Count α(x) Of take value Fan around remember :u=α(x)x→0limu=u0 root According to the 3、 ... and horn sit mark single position round can know u→kπlimsin(u)=x→0limsin(α(x))=u→u0limsin(u)=0∵u→kπlimsin(u)=0∴u0=kπ root According to the α(x) Of value Domain , can know ,u0⩽2π∴k=0(u0=0, namely x→0limα(x)=u0=0),
边栏推荐
- High performance and high availability computing architecture scheme commented by Weibo
- pd. Difference between before and after cut interval parameter setting
- 几行代码就能实现复杂的 Excel 导入导出,这个工具类真心强大!
- 华为云OneMeeting告诉你全场景会议这么开!
- AOSP Tsinghua image download error resolution
- leetcode 1689. Partitioning Into Minimum Number Of Deci-Binary Numbers(最少的“二进制数“个数)
- 基于管线的混合渲染
- 让企业数字化砸锅和IT主管背锅的软件供应链安全风险指南
- sql计算每日新增用户、及留存率指标
- G biaxial graph SQL script
猜你喜欢
随机推荐
Rxjs map, mergeMap 和 switchMap 的区别和联系
Enhancing steam and engineering education from theory to practice
leetcode 1689. Partitioning Into Minimum Number Of Deci-Binary Numbers(最少的“二进制数“个数)
模块化操作
[unity3d] emission (raycast) physical ray (Ray)
安装nodejs环境
CVPR2022 | 浙大、蚂蚁集团提出基于标签关系树的层级残差多粒度分类网络,建模多粒度标签间的层级知识
leetcode 1689. Partitioning into minimum number of deci binary numbers
SQL calculates daily new users and retention rate indicators
OpenHarmony—内核对象事件之源码详解
微博评论的高性能高可用计算架构方案
Windows 64位下载安装My SQL
Friends from Fujian, your old-age insurance is on the cloud!
async-validator.js数据校验器
几行代码就能实现复杂的 Excel 导入导出,这个工具类真心强大!
Find out the users who log in for 7 consecutive days and 30 consecutive days
使用.NetCore自带的后台作业,出入队简单模拟生产者消费者处理请求响应的数据
A few lines of code can realize complex excel import and export. This tool class is really powerful!
About covariance and correlation
How to remove dataframe field column names








