当前位置:网站首页>[set theory] binary relation (example of binary relation operation | example of inverse operation | example of composite operation | example of limiting operation | example of image operation)
[set theory] binary relation (example of binary relation operation | example of inverse operation | example of composite operation | example of limiting operation | example of image operation)
2022-07-03 04:37:00 【Programmer community】
List of articles
- One 、 Examples of inverse operations
- Two 、 Examples of composite operations ( Reverse order synthesis )
- 3、 ... and 、 Examples of limiting operations
- Four 、 Like operation examples
One 、 Examples of inverse operations
A
=
{
a
,
b
,
c
,
d
}
A = \{ a, b, c, d \}
A={ a,b,c,d}
B
=
{
a
,
b
,
<
c
,
d
>
}
B = \{ a, b, <c, d> \}
B={ a,b,<c,d>}
C
=
{
<
a
,
b
>
,
<
c
,
d
>
}
C = \{ <a, b> , <c, d> \}
C={ <a,b>,<c,d>}
Find the inverse operation of the above set
The inverse operation can only aim at Ordered pair Conduct , If there is no order, right , There is no concept of relational operation ;
A
A
A There are no ordered pairs in the set , Therefore, there is no concept of relational operation , Inverse it , The result is an empty set ;
A
−
1
=
∅
A^{-1} = \varnothing
A−1=∅
B
B
B Collection Yes Ordered pair
<
c
,
d
>
<c, d>
<c,d> , The inverse operation is to find the inverse of all ordered pairs ;
B
−
1
=
{
<
d
,
c
>
}
B^{-1} = \{ <d, c> \}
B−1={ <d,c>}
C
C
C Collection Yes Ordered pair
<
a
,
b
>
,
<
c
,
d
>
<a,b> , <c, d>
<a,b>,<c,d> , The inverse operation is to find the inverse of all ordered pairs ;
C
−
1
=
{
<
b
,
a
>
,
<
d
,
c
>
}
C^{-1} = \{ <b,a> , <d, c> \}
C−1={ <b,a>,<d,c>}
Two 、 Examples of composite operations ( Reverse order synthesis )
B
=
{
a
,
b
,
<
c
,
d
>
}
B = \{ a, b , <c,d> \}
B={ a,b,<c,d>}
R
=
{
<
a
,
b
>
,
<
c
,
d
>
}
R = \{ <a,b> , <c,d> \}
R={ <a,b>,<c,d>}
G
=
{
<
b
,
e
>
,
<
d
,
c
>
}
G = \{ <b, e> , <d, c> \}
G={ <b,e>,<d,c>}
Find the result of the following synthesis operation , there synthesis refer to Reverse order synthesis
B
o
R
−
1
B o R^{-1}
BoR−1
R
−
1
=
{
<
b
,
a
>
,
<
d
,
c
>
}
R^{-1} = \{ <b,a> , <d,c> \}
R−1={ <b,a>,<d,c>}
B
o
R
−
1
=
{
<
c
,
d
>
}
o
{
<
b
,
a
>
,
<
d
,
c
>
}
=
{
<
d
,
d
>
}
B o R^{-1} = \{ <c, d> \} o \{ <b,a> , <d,c> \} = \{ <d, d> \}
BoR−1={ <c,d>}o{ <b,a>,<d,c>}={ <d,d>}
synthesis The default is Reverse order synthesis
G
o
B
G o B
GoB
G
o
B
=
{
<
b
,
e
>
,
<
d
,
c
>
}
o
{
<
c
,
d
>
}
=
{
<
c
,
c
>
}
G o B = \{<b,e>, <d, c>\} o \{ <c,d> \} = \{ <c,c> \}
GoB={ <b,e>,<d,c>}o{ <c,d>}={ <c,c>}
G
o
R
G o R
GoR
G
o
R
=
{
<
b
,
e
>
,
<
d
,
c
>
}
o
{
<
a
,
b
>
,
<
c
,
d
>
}
=
{
<
a
,
e
>
,
<
c
,
c
>
}
G o R =\{<b,e>, <d, c>\} o \{ <a,b> , <c,d> \} = \{ <a,e>, <c,c> \}
GoR={ <b,e>,<d,c>}o{ <a,b>,<c,d>}={ <a,e>,<c,c>}
R
o
G
R o G
RoG
R
o
G
=
{
<
a
,
b
>
,
<
c
,
d
>
}
o
{
<
b
,
e
>
,
<
d
,
c
>
}
=
{
<
d
,
d
>
}
R o G =\{ <a,b> , <c,d> \} o \{<b,e>, <d, c>\} = \{ <d,d> \}
RoG={ <a,b>,<c,d>}o{ <b,e>,<d,c>}={ <d,d>}
3、 ... and 、 Examples of limiting operations
F
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
F = \{ <a,b> , <a, \{a\}> , <\{a\} , \{a, \{a\}\}> \}
F={ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>}
Reference resources : 【 Set theory 】 Binary relationship ( Domain of definition | range | Domain | Inverse operation | Reverse composition operation | Limit | image | Single root | Single value | The nature of composition operation ) 5、 ... and 、 Relationship constraints
1. seek
F
↾
{
a
}
F \upharpoonright \{a\}
F↾{ a}
F
F
F Ordered pairs in sets , The first element is
{
a
}
\{a\}
{ a} An ordered pair of elements in a set , The set of these ordered pairs is
F
F
F aggregate stay
{
a
}
\{a\}
{ a} Restrictions on sets ;
F
↾
{
a
}
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
}
F \upharpoonright \{a\} = \{ <a,b> , <a, \{a\}> \}
F↾{ a}={ <a,b>,<a,{ a}>}
2. seek
F
↾
{
{
a
}
}
F \upharpoonright \{\{a\}\}
F↾{ { a}}
F
F
F Ordered pairs in sets , The first element is
{
{
a
}
}
\{\{a\}\}
{ { a}} An ordered pair of elements in a set ,
{
{
a
}
}
\{\{a\}\}
{ { a}} The elements in the set are
{
a
}
\{a\}
{ a} , The set of these ordered pairs is
F
F
F aggregate stay
{
{
a
}
}
\{\{a\}\}
{ { a}} Restrictions on sets ;
F
↾
{
{
a
}
}
=
{
<
{
a
,
{
a
}
}
>
}
F \upharpoonright \{\{a\}\} = \{ <\{a, \{a\}\}> \}
F↾{ { a}}={ <{ a,{ a}}>}
3. seek
F
↾
{
a
,
{
a
}
}
F \upharpoonright \{a, \{a\}\}
F↾{ a,{ a}}
F
F
F Ordered pairs in sets , The first element is
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The elements in the collection That's right , The set of these ordered pairs is
F
F
F aggregate stay
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} Restrictions on sets ;
F
↾
{
a
,
{
a
}
}
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
F \upharpoonright \{a, \{a\}\} = \{ <a,b> , <a, \{a\}> , <\{a\} , \{a, \{a\}\}> \}
F↾{ a,{ a}}={ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>}
4. seek
F
−
1
↾
{
{
a
}
}
F^{-1} \upharpoonright \{\{a\}\}
F−1↾{ { a}}
F
−
1
=
{
<
b
,
a
>
,
<
{
a
}
,
a
>
,
<
{
a
,
{
a
}
}
,
{
a
}
>
}
F^{-1} = \{ <b, a> , <\{a\}, a> , <\{a, \{a\}\}, \{a\} > \}
F−1={ <b,a>,<{ a},a>,<{ a,{ a}},{ a}>}
F
−
1
F^{-1}
F−1 Ordered pairs in sets , The first element is
{
{
a
}
}
\{\{a\}\}
{ { a}} The elements in the collection That's right , The set of these ordered pairs is
F
−
1
F^{-1}
F−1 aggregate stay
{
{
a
}
}
\{\{a\}\}
{ { a}} Restrictions on sets ;
F
−
1
↾
{
{
a
}
}
=
{
<
{
a
}
,
a
>
}
F^{-1} \upharpoonright \{\{a\}\} = \{ <\{a\}, a> \}
F−1↾{ { a}}={ <{ a},a>}
Four 、 Like operation examples
F
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
F = \{ <a, b> , <a, \{ a \}> , <\{ a \} , \{ a, \{a\} \}> \}
F={ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>}
Reference resources : 【 Set theory 】 Binary relationship ( Domain of definition | range | Domain | Inverse operation | Reverse composition operation | Limit | image | Single root | Single value | The nature of composition operation ) 6、 ... and 、 Image of relationship
F
F
F Assemble in
A
A
A Collective image , yes
F
F
F Assemble in
A
A
A Limited on the set range ;
1.
F
[
{
a
}
]
F[\{a\}]
F[{ a}]
F
F
F Assemble in
{
a
}
\{a\}
{ a} The image on the set , yes
F
F
F Assemble in
{
a
}
\{a\}
{ a} The value range of the restriction on the set ,
F
F
F Assemble in
{
a
}
\{a\}
{ a} The limit on the set is
{
<
a
,
b
>
,
<
a
,
{
a
}
>
}
\{ <a, b> , <a, \{ a \}> \}
{ <a,b>,<a,{ a}>} , Corresponding
F
F
F Assemble in
{
a
}
\{a\}
{ a} On the set, it looks like
{
b
,
{
a
}
}
\{ b, \{a\} \}
{ b,{ a}}
F
[
{
a
}
]
=
{
b
,
{
a
}
}
F[\{a\}] = \{ b, \{a\} \}
F[{ a}]={ b,{ a}}
2.
F
[
{
a
,
{
a
}
}
]
F[\{a, \{a\}\}]
F[{ a,{ a}}]
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The image on the set , yes
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The value range of the restriction on the set ,
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The limit on the set is
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
\{ <a, b> , <a, \{ a \}> , <\{ a \} , \{ a, \{a\} \}> \}
{ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>} , Corresponding
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} On the set, it looks like
{
b
,
{
a
}
,
{
a
,
{
a
}
}
\{ b, \{a\} , \{ a, \{a\} \}
{ b,{ a},{ a,{ a}}
F
[
{
a
,
{
a
}
}
]
=
{
b
,
{
a
}
,
{
a
,
{
a
}
}
F[\{a, \{a\}\}] = \{ b, \{a\} , \{ a, \{a\} \}
F[{ a,{ a}}]={ b,{ a},{ a,{ a}}
3.
F
−
1
[
{
a
}
]
F^{-1}[\{a\}]
F−1[{ a}]
F
−
1
=
{
<
b
,
a
>
,
<
{
a
}
,
a
>
,
<
{
a
,
{
a
}
}
,
{
a
}
>
}
F^{-1} = \{ <b, a> , <\{a\}, a> , <\{a, \{a\}\}, \{a\} > \}
F−1={ <b,a>,<{ a},a>,<{ a,{ a}},{ a}>}
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} The image on the set , yes
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} The value range of the restriction on the set ,
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} The limit on the set is
∅
\varnothing
∅ , Corresponding
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} On the set, it looks like
∅
\varnothing
∅
F
−
1
[
{
a
}
]
=
∅
F^{-1}[\{a\}] = \varnothing
F−1[{ a}]=∅
4.
F
−
1
[
{
{
a
}
}
]
F^{-1}[\{ \{a\} \}]
F−1[{ { a}}]
F
−
1
=
{
<
b
,
a
>
,
<
{
a
}
,
a
>
,
<
{
a
,
{
a
}
}
,
{
a
}
>
}
F^{-1} = \{ <b, a> , <\{a\}, a> , <\{a, \{a\}\}, \{a\} > \}
F−1={ <b,a>,<{ a},a>,<{ a,{ a}},{ a}>}
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} The image on the set , yes
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} The value range of the restriction on the set ,
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} The limit on the set is
<
{
a
}
,
a
>
<\{a\}, a>
<{ a},a> , Corresponding
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} On the set, it looks like
{
a
}
\{a\}
{ a}
F
−
1
[
{
{
a
}
}
]
=
{
a
}
F^{-1}[\{ \{a\} \}] = \{a\}
F−1[{ { a}}]={ a}
边栏推荐
- When using the benchmarksql tool to preheat data for kingbasees, execute: select sys_ Prewarm ('ndx_oorder_2 ') error
- [fxcg] market analysis today
- How to use kotlin to improve productivity: kotlin tips
- Ffmpeg tanscoding transcoding
- data2vec! New milestone of unified mode
- 2022 t elevator repair simulation examination question bank and t elevator repair simulation examination question bank
- FuncS sh file not found when using the benchmarksql tool to test kingbases
- Kingbasees plug-in KDB of Jincang database_ database_ link
- I've been in software testing for 8 years and worked as a test leader for 3 years. I can also be a programmer if I'm not a professional
- Preliminary cognition of C language pointer
猜你喜欢

The usage of micro service project swagger aggregation document shows all micro service addresses in the form of swagger grouping

Bugku CTF daily question baby_ flag. txt

Some information about the developer environment in Chengdu

MC Layer Target

How to retrieve the password for opening word files

Which Bluetooth headset is good about 400? Four Bluetooth headsets with strong noise reduction are recommended

Learning practice: comprehensive application of cycle and branch structure (I)

Leetcode simple question: check whether the array is sorted and rotated

Know that Chuangyu cloud monitoring - scanv Max update: Ecology OA unauthorized server request forgery and other two vulnerabilities can be detected

2022 new examination questions for the main principals of hazardous chemical business units and examination skills for the main principals of hazardous chemical business units
随机推荐
Kingbasees plug-in KDB of Jincang database_ date_ function
Wine travel Jianghu War: Ctrip is strong, meituan is strong, and Tiktok is fighting
【工具跑SQL盲注】
Use the benchmarksql tool to perform a data prompt on kingbases. The jdbc driver cannot be found
What's wrong with SD card data damage? How to recover SD card data damage
Learning practice: comprehensive application of cycle and branch structure (I)
The reason why the entity class in the database is changed into hump naming
Sdl2 + OpenGL glsl practice (Continued)
SSM based campus part-time platform for College Students
4 years of experience to interview test development, 10 minutes to end, ask too
Design and implementation of JSP logistics center storage information management system
Number of uniform strings of leetcode simple problem
[set theory] binary relation (example of binary relation on a | binary relation on a)
After job hopping at the end of the year, I interviewed more than 30 companies in two weeks and finally landed
vulnhub HA: Natraj
IPhone x forgot the boot password
arthas watch 抓取入参的某个字段/属性
BMZCTF simple_ pop
Arthas watch grabs a field / attribute of the input parameter
Kubernetes source code analysis (I)