当前位置:网站首页>[set theory] binary relation (example of binary relation operation | example of inverse operation | example of composite operation | example of limiting operation | example of image operation)
[set theory] binary relation (example of binary relation operation | example of inverse operation | example of composite operation | example of limiting operation | example of image operation)
2022-07-03 04:37:00 【Programmer community】
List of articles
- One 、 Examples of inverse operations
- Two 、 Examples of composite operations ( Reverse order synthesis )
- 3、 ... and 、 Examples of limiting operations
- Four 、 Like operation examples
One 、 Examples of inverse operations
A
=
{
a
,
b
,
c
,
d
}
A = \{ a, b, c, d \}
A={ a,b,c,d}
B
=
{
a
,
b
,
<
c
,
d
>
}
B = \{ a, b, <c, d> \}
B={ a,b,<c,d>}
C
=
{
<
a
,
b
>
,
<
c
,
d
>
}
C = \{ <a, b> , <c, d> \}
C={ <a,b>,<c,d>}
Find the inverse operation of the above set
The inverse operation can only aim at Ordered pair Conduct , If there is no order, right , There is no concept of relational operation ;
A
A
A There are no ordered pairs in the set , Therefore, there is no concept of relational operation , Inverse it , The result is an empty set ;
A
−
1
=
∅
A^{-1} = \varnothing
A−1=∅
B
B
B Collection Yes Ordered pair
<
c
,
d
>
<c, d>
<c,d> , The inverse operation is to find the inverse of all ordered pairs ;
B
−
1
=
{
<
d
,
c
>
}
B^{-1} = \{ <d, c> \}
B−1={ <d,c>}
C
C
C Collection Yes Ordered pair
<
a
,
b
>
,
<
c
,
d
>
<a,b> , <c, d>
<a,b>,<c,d> , The inverse operation is to find the inverse of all ordered pairs ;
C
−
1
=
{
<
b
,
a
>
,
<
d
,
c
>
}
C^{-1} = \{ <b,a> , <d, c> \}
C−1={ <b,a>,<d,c>}
Two 、 Examples of composite operations ( Reverse order synthesis )
B
=
{
a
,
b
,
<
c
,
d
>
}
B = \{ a, b , <c,d> \}
B={ a,b,<c,d>}
R
=
{
<
a
,
b
>
,
<
c
,
d
>
}
R = \{ <a,b> , <c,d> \}
R={ <a,b>,<c,d>}
G
=
{
<
b
,
e
>
,
<
d
,
c
>
}
G = \{ <b, e> , <d, c> \}
G={ <b,e>,<d,c>}
Find the result of the following synthesis operation , there synthesis refer to Reverse order synthesis
B
o
R
−
1
B o R^{-1}
BoR−1
R
−
1
=
{
<
b
,
a
>
,
<
d
,
c
>
}
R^{-1} = \{ <b,a> , <d,c> \}
R−1={ <b,a>,<d,c>}
B
o
R
−
1
=
{
<
c
,
d
>
}
o
{
<
b
,
a
>
,
<
d
,
c
>
}
=
{
<
d
,
d
>
}
B o R^{-1} = \{ <c, d> \} o \{ <b,a> , <d,c> \} = \{ <d, d> \}
BoR−1={ <c,d>}o{ <b,a>,<d,c>}={ <d,d>}
synthesis The default is Reverse order synthesis
G
o
B
G o B
GoB
G
o
B
=
{
<
b
,
e
>
,
<
d
,
c
>
}
o
{
<
c
,
d
>
}
=
{
<
c
,
c
>
}
G o B = \{<b,e>, <d, c>\} o \{ <c,d> \} = \{ <c,c> \}
GoB={ <b,e>,<d,c>}o{ <c,d>}={ <c,c>}
G
o
R
G o R
GoR
G
o
R
=
{
<
b
,
e
>
,
<
d
,
c
>
}
o
{
<
a
,
b
>
,
<
c
,
d
>
}
=
{
<
a
,
e
>
,
<
c
,
c
>
}
G o R =\{<b,e>, <d, c>\} o \{ <a,b> , <c,d> \} = \{ <a,e>, <c,c> \}
GoR={ <b,e>,<d,c>}o{ <a,b>,<c,d>}={ <a,e>,<c,c>}
R
o
G
R o G
RoG
R
o
G
=
{
<
a
,
b
>
,
<
c
,
d
>
}
o
{
<
b
,
e
>
,
<
d
,
c
>
}
=
{
<
d
,
d
>
}
R o G =\{ <a,b> , <c,d> \} o \{<b,e>, <d, c>\} = \{ <d,d> \}
RoG={ <a,b>,<c,d>}o{ <b,e>,<d,c>}={ <d,d>}
3、 ... and 、 Examples of limiting operations
F
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
F = \{ <a,b> , <a, \{a\}> , <\{a\} , \{a, \{a\}\}> \}
F={ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>}
Reference resources : 【 Set theory 】 Binary relationship ( Domain of definition | range | Domain | Inverse operation | Reverse composition operation | Limit | image | Single root | Single value | The nature of composition operation ) 5、 ... and 、 Relationship constraints
1. seek
F
↾
{
a
}
F \upharpoonright \{a\}
F↾{ a}
F
F
F Ordered pairs in sets , The first element is
{
a
}
\{a\}
{ a} An ordered pair of elements in a set , The set of these ordered pairs is
F
F
F aggregate stay
{
a
}
\{a\}
{ a} Restrictions on sets ;
F
↾
{
a
}
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
}
F \upharpoonright \{a\} = \{ <a,b> , <a, \{a\}> \}
F↾{ a}={ <a,b>,<a,{ a}>}
2. seek
F
↾
{
{
a
}
}
F \upharpoonright \{\{a\}\}
F↾{ { a}}
F
F
F Ordered pairs in sets , The first element is
{
{
a
}
}
\{\{a\}\}
{ { a}} An ordered pair of elements in a set ,
{
{
a
}
}
\{\{a\}\}
{ { a}} The elements in the set are
{
a
}
\{a\}
{ a} , The set of these ordered pairs is
F
F
F aggregate stay
{
{
a
}
}
\{\{a\}\}
{ { a}} Restrictions on sets ;
F
↾
{
{
a
}
}
=
{
<
{
a
,
{
a
}
}
>
}
F \upharpoonright \{\{a\}\} = \{ <\{a, \{a\}\}> \}
F↾{ { a}}={ <{ a,{ a}}>}
3. seek
F
↾
{
a
,
{
a
}
}
F \upharpoonright \{a, \{a\}\}
F↾{ a,{ a}}
F
F
F Ordered pairs in sets , The first element is
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The elements in the collection That's right , The set of these ordered pairs is
F
F
F aggregate stay
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} Restrictions on sets ;
F
↾
{
a
,
{
a
}
}
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
F \upharpoonright \{a, \{a\}\} = \{ <a,b> , <a, \{a\}> , <\{a\} , \{a, \{a\}\}> \}
F↾{ a,{ a}}={ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>}
4. seek
F
−
1
↾
{
{
a
}
}
F^{-1} \upharpoonright \{\{a\}\}
F−1↾{ { a}}
F
−
1
=
{
<
b
,
a
>
,
<
{
a
}
,
a
>
,
<
{
a
,
{
a
}
}
,
{
a
}
>
}
F^{-1} = \{ <b, a> , <\{a\}, a> , <\{a, \{a\}\}, \{a\} > \}
F−1={ <b,a>,<{ a},a>,<{ a,{ a}},{ a}>}
F
−
1
F^{-1}
F−1 Ordered pairs in sets , The first element is
{
{
a
}
}
\{\{a\}\}
{ { a}} The elements in the collection That's right , The set of these ordered pairs is
F
−
1
F^{-1}
F−1 aggregate stay
{
{
a
}
}
\{\{a\}\}
{ { a}} Restrictions on sets ;
F
−
1
↾
{
{
a
}
}
=
{
<
{
a
}
,
a
>
}
F^{-1} \upharpoonright \{\{a\}\} = \{ <\{a\}, a> \}
F−1↾{ { a}}={ <{ a},a>}
Four 、 Like operation examples
F
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
F = \{ <a, b> , <a, \{ a \}> , <\{ a \} , \{ a, \{a\} \}> \}
F={ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>}
Reference resources : 【 Set theory 】 Binary relationship ( Domain of definition | range | Domain | Inverse operation | Reverse composition operation | Limit | image | Single root | Single value | The nature of composition operation ) 6、 ... and 、 Image of relationship
F
F
F Assemble in
A
A
A Collective image , yes
F
F
F Assemble in
A
A
A Limited on the set range ;
1.
F
[
{
a
}
]
F[\{a\}]
F[{ a}]
F
F
F Assemble in
{
a
}
\{a\}
{ a} The image on the set , yes
F
F
F Assemble in
{
a
}
\{a\}
{ a} The value range of the restriction on the set ,
F
F
F Assemble in
{
a
}
\{a\}
{ a} The limit on the set is
{
<
a
,
b
>
,
<
a
,
{
a
}
>
}
\{ <a, b> , <a, \{ a \}> \}
{ <a,b>,<a,{ a}>} , Corresponding
F
F
F Assemble in
{
a
}
\{a\}
{ a} On the set, it looks like
{
b
,
{
a
}
}
\{ b, \{a\} \}
{ b,{ a}}
F
[
{
a
}
]
=
{
b
,
{
a
}
}
F[\{a\}] = \{ b, \{a\} \}
F[{ a}]={ b,{ a}}
2.
F
[
{
a
,
{
a
}
}
]
F[\{a, \{a\}\}]
F[{ a,{ a}}]
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The image on the set , yes
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The value range of the restriction on the set ,
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The limit on the set is
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
\{ <a, b> , <a, \{ a \}> , <\{ a \} , \{ a, \{a\} \}> \}
{ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>} , Corresponding
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} On the set, it looks like
{
b
,
{
a
}
,
{
a
,
{
a
}
}
\{ b, \{a\} , \{ a, \{a\} \}
{ b,{ a},{ a,{ a}}
F
[
{
a
,
{
a
}
}
]
=
{
b
,
{
a
}
,
{
a
,
{
a
}
}
F[\{a, \{a\}\}] = \{ b, \{a\} , \{ a, \{a\} \}
F[{ a,{ a}}]={ b,{ a},{ a,{ a}}
3.
F
−
1
[
{
a
}
]
F^{-1}[\{a\}]
F−1[{ a}]
F
−
1
=
{
<
b
,
a
>
,
<
{
a
}
,
a
>
,
<
{
a
,
{
a
}
}
,
{
a
}
>
}
F^{-1} = \{ <b, a> , <\{a\}, a> , <\{a, \{a\}\}, \{a\} > \}
F−1={ <b,a>,<{ a},a>,<{ a,{ a}},{ a}>}
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} The image on the set , yes
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} The value range of the restriction on the set ,
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} The limit on the set is
∅
\varnothing
∅ , Corresponding
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} On the set, it looks like
∅
\varnothing
∅
F
−
1
[
{
a
}
]
=
∅
F^{-1}[\{a\}] = \varnothing
F−1[{ a}]=∅
4.
F
−
1
[
{
{
a
}
}
]
F^{-1}[\{ \{a\} \}]
F−1[{ { a}}]
F
−
1
=
{
<
b
,
a
>
,
<
{
a
}
,
a
>
,
<
{
a
,
{
a
}
}
,
{
a
}
>
}
F^{-1} = \{ <b, a> , <\{a\}, a> , <\{a, \{a\}\}, \{a\} > \}
F−1={ <b,a>,<{ a},a>,<{ a,{ a}},{ a}>}
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} The image on the set , yes
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} The value range of the restriction on the set ,
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} The limit on the set is
<
{
a
}
,
a
>
<\{a\}, a>
<{ a},a> , Corresponding
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} On the set, it looks like
{
a
}
\{a\}
{ a}
F
−
1
[
{
{
a
}
}
]
=
{
a
}
F^{-1}[\{ \{a\} \}] = \{a\}
F−1[{ { a}}]={ a}
边栏推荐
- 220214c language learning diary
- 2022 chemical automation control instrument examination summary and chemical automation control instrument certificate examination
- 使用BENCHMARKSQL工具对kingbasees并发测试时kill掉主进程成功后存在子线程未及时关闭
- Dive into deep learning - 2.1 data operation & Exercise
- Learning practice: comprehensive application of cycle and branch structure (I)
- Reptile exercise 03
- Number of 1 in binary (simple difficulty)
- BMZCTF simple_ pop
- 有道云笔记
- Writing skills of multi plate rotation strategy -- strategy writing learning materials
猜你喜欢
![[Thesis Writing] how to write the overall design of JSP tourism network](/img/02/841e8870c2ef871c182b9bb8252a83.jpg)
[Thesis Writing] how to write the overall design of JSP tourism network
![[literature reading] sparse in deep learning: practicing and growth for effective information and training in NN](/img/7e/50fa6f65b5a4f0bb60909f57daff56.png)
[literature reading] sparse in deep learning: practicing and growth for effective information and training in NN

Joint set search: merge intervals and ask whether two numbers are in the same set

Pyqt control part (II)

关于开学的准备与专业认知

MC Layer Target

Number of uniform strings of leetcode simple problem

After job hopping at the end of the year, I interviewed more than 30 companies in two weeks and finally landed

2022 P cylinder filling test content and P cylinder filling simulation test questions

联发科技2023届提前批IC笔试(题目)
随机推荐
Introduction of pointer variables in function parameters
How to choose cross-border e-commerce multi merchant system
2022 tea master (intermediate) examination questions and tea master (intermediate) examination skills
7. Integrated learning
Golang -- realize file transfer
Integration of Android high-frequency interview questions (including reference answers)
Solve BP Chinese garbled code
[literature reading] sparse in deep learning: practicing and growth for effective information and training in NN
[dynamic programming] subsequence problem
[fxcg] inflation differences will still lead to the differentiation of monetary policies in various countries
vulnhub HA: Natraj
【SQL注入点】注入点出现位置、判断
After job hopping at the end of the year, I interviewed more than 30 companies in two weeks and finally landed
Pyqt control part (II)
Leetcode simple problem delete an element to strictly increment the array
2022-02-12 (338. Bit count)
带有注意力RPN和多关系检测器的小样本目标检测网络(提供源码和数据及下载)...
stm32逆向入门
Internationalization and localization, dark mode and dark mode in compose
Bugku CTF daily question baby_ flag. txt