当前位置:网站首页>[set theory] binary relation (example of binary relation operation | example of inverse operation | example of composite operation | example of limiting operation | example of image operation)
[set theory] binary relation (example of binary relation operation | example of inverse operation | example of composite operation | example of limiting operation | example of image operation)
2022-07-03 04:37:00 【Programmer community】
List of articles
- One 、 Examples of inverse operations
- Two 、 Examples of composite operations ( Reverse order synthesis )
- 3、 ... and 、 Examples of limiting operations
- Four 、 Like operation examples
One 、 Examples of inverse operations
A
=
{
a
,
b
,
c
,
d
}
A = \{ a, b, c, d \}
A={ a,b,c,d}
B
=
{
a
,
b
,
<
c
,
d
>
}
B = \{ a, b, <c, d> \}
B={ a,b,<c,d>}
C
=
{
<
a
,
b
>
,
<
c
,
d
>
}
C = \{ <a, b> , <c, d> \}
C={ <a,b>,<c,d>}
Find the inverse operation of the above set
The inverse operation can only aim at Ordered pair Conduct , If there is no order, right , There is no concept of relational operation ;
A
A
A There are no ordered pairs in the set , Therefore, there is no concept of relational operation , Inverse it , The result is an empty set ;
A
−
1
=
∅
A^{-1} = \varnothing
A−1=∅
B
B
B Collection Yes Ordered pair
<
c
,
d
>
<c, d>
<c,d> , The inverse operation is to find the inverse of all ordered pairs ;
B
−
1
=
{
<
d
,
c
>
}
B^{-1} = \{ <d, c> \}
B−1={ <d,c>}
C
C
C Collection Yes Ordered pair
<
a
,
b
>
,
<
c
,
d
>
<a,b> , <c, d>
<a,b>,<c,d> , The inverse operation is to find the inverse of all ordered pairs ;
C
−
1
=
{
<
b
,
a
>
,
<
d
,
c
>
}
C^{-1} = \{ <b,a> , <d, c> \}
C−1={ <b,a>,<d,c>}
Two 、 Examples of composite operations ( Reverse order synthesis )
B
=
{
a
,
b
,
<
c
,
d
>
}
B = \{ a, b , <c,d> \}
B={ a,b,<c,d>}
R
=
{
<
a
,
b
>
,
<
c
,
d
>
}
R = \{ <a,b> , <c,d> \}
R={ <a,b>,<c,d>}
G
=
{
<
b
,
e
>
,
<
d
,
c
>
}
G = \{ <b, e> , <d, c> \}
G={ <b,e>,<d,c>}
Find the result of the following synthesis operation , there synthesis refer to Reverse order synthesis
B
o
R
−
1
B o R^{-1}
BoR−1
R
−
1
=
{
<
b
,
a
>
,
<
d
,
c
>
}
R^{-1} = \{ <b,a> , <d,c> \}
R−1={ <b,a>,<d,c>}
B
o
R
−
1
=
{
<
c
,
d
>
}
o
{
<
b
,
a
>
,
<
d
,
c
>
}
=
{
<
d
,
d
>
}
B o R^{-1} = \{ <c, d> \} o \{ <b,a> , <d,c> \} = \{ <d, d> \}
BoR−1={ <c,d>}o{ <b,a>,<d,c>}={ <d,d>}
synthesis The default is Reverse order synthesis
G
o
B
G o B
GoB
G
o
B
=
{
<
b
,
e
>
,
<
d
,
c
>
}
o
{
<
c
,
d
>
}
=
{
<
c
,
c
>
}
G o B = \{<b,e>, <d, c>\} o \{ <c,d> \} = \{ <c,c> \}
GoB={ <b,e>,<d,c>}o{ <c,d>}={ <c,c>}
G
o
R
G o R
GoR
G
o
R
=
{
<
b
,
e
>
,
<
d
,
c
>
}
o
{
<
a
,
b
>
,
<
c
,
d
>
}
=
{
<
a
,
e
>
,
<
c
,
c
>
}
G o R =\{<b,e>, <d, c>\} o \{ <a,b> , <c,d> \} = \{ <a,e>, <c,c> \}
GoR={ <b,e>,<d,c>}o{ <a,b>,<c,d>}={ <a,e>,<c,c>}
R
o
G
R o G
RoG
R
o
G
=
{
<
a
,
b
>
,
<
c
,
d
>
}
o
{
<
b
,
e
>
,
<
d
,
c
>
}
=
{
<
d
,
d
>
}
R o G =\{ <a,b> , <c,d> \} o \{<b,e>, <d, c>\} = \{ <d,d> \}
RoG={ <a,b>,<c,d>}o{ <b,e>,<d,c>}={ <d,d>}
3、 ... and 、 Examples of limiting operations
F
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
F = \{ <a,b> , <a, \{a\}> , <\{a\} , \{a, \{a\}\}> \}
F={ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>}
Reference resources : 【 Set theory 】 Binary relationship ( Domain of definition | range | Domain | Inverse operation | Reverse composition operation | Limit | image | Single root | Single value | The nature of composition operation ) 5、 ... and 、 Relationship constraints
1. seek
F
↾
{
a
}
F \upharpoonright \{a\}
F↾{ a}
F
F
F Ordered pairs in sets , The first element is
{
a
}
\{a\}
{ a} An ordered pair of elements in a set , The set of these ordered pairs is
F
F
F aggregate stay
{
a
}
\{a\}
{ a} Restrictions on sets ;
F
↾
{
a
}
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
}
F \upharpoonright \{a\} = \{ <a,b> , <a, \{a\}> \}
F↾{ a}={ <a,b>,<a,{ a}>}
2. seek
F
↾
{
{
a
}
}
F \upharpoonright \{\{a\}\}
F↾{ { a}}
F
F
F Ordered pairs in sets , The first element is
{
{
a
}
}
\{\{a\}\}
{ { a}} An ordered pair of elements in a set ,
{
{
a
}
}
\{\{a\}\}
{ { a}} The elements in the set are
{
a
}
\{a\}
{ a} , The set of these ordered pairs is
F
F
F aggregate stay
{
{
a
}
}
\{\{a\}\}
{ { a}} Restrictions on sets ;
F
↾
{
{
a
}
}
=
{
<
{
a
,
{
a
}
}
>
}
F \upharpoonright \{\{a\}\} = \{ <\{a, \{a\}\}> \}
F↾{ { a}}={ <{ a,{ a}}>}
3. seek
F
↾
{
a
,
{
a
}
}
F \upharpoonright \{a, \{a\}\}
F↾{ a,{ a}}
F
F
F Ordered pairs in sets , The first element is
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The elements in the collection That's right , The set of these ordered pairs is
F
F
F aggregate stay
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} Restrictions on sets ;
F
↾
{
a
,
{
a
}
}
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
F \upharpoonright \{a, \{a\}\} = \{ <a,b> , <a, \{a\}> , <\{a\} , \{a, \{a\}\}> \}
F↾{ a,{ a}}={ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>}
4. seek
F
−
1
↾
{
{
a
}
}
F^{-1} \upharpoonright \{\{a\}\}
F−1↾{ { a}}
F
−
1
=
{
<
b
,
a
>
,
<
{
a
}
,
a
>
,
<
{
a
,
{
a
}
}
,
{
a
}
>
}
F^{-1} = \{ <b, a> , <\{a\}, a> , <\{a, \{a\}\}, \{a\} > \}
F−1={ <b,a>,<{ a},a>,<{ a,{ a}},{ a}>}
F
−
1
F^{-1}
F−1 Ordered pairs in sets , The first element is
{
{
a
}
}
\{\{a\}\}
{ { a}} The elements in the collection That's right , The set of these ordered pairs is
F
−
1
F^{-1}
F−1 aggregate stay
{
{
a
}
}
\{\{a\}\}
{ { a}} Restrictions on sets ;
F
−
1
↾
{
{
a
}
}
=
{
<
{
a
}
,
a
>
}
F^{-1} \upharpoonright \{\{a\}\} = \{ <\{a\}, a> \}
F−1↾{ { a}}={ <{ a},a>}
Four 、 Like operation examples
F
=
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
F = \{ <a, b> , <a, \{ a \}> , <\{ a \} , \{ a, \{a\} \}> \}
F={ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>}
Reference resources : 【 Set theory 】 Binary relationship ( Domain of definition | range | Domain | Inverse operation | Reverse composition operation | Limit | image | Single root | Single value | The nature of composition operation ) 6、 ... and 、 Image of relationship
F
F
F Assemble in
A
A
A Collective image , yes
F
F
F Assemble in
A
A
A Limited on the set range ;
1.
F
[
{
a
}
]
F[\{a\}]
F[{ a}]
F
F
F Assemble in
{
a
}
\{a\}
{ a} The image on the set , yes
F
F
F Assemble in
{
a
}
\{a\}
{ a} The value range of the restriction on the set ,
F
F
F Assemble in
{
a
}
\{a\}
{ a} The limit on the set is
{
<
a
,
b
>
,
<
a
,
{
a
}
>
}
\{ <a, b> , <a, \{ a \}> \}
{ <a,b>,<a,{ a}>} , Corresponding
F
F
F Assemble in
{
a
}
\{a\}
{ a} On the set, it looks like
{
b
,
{
a
}
}
\{ b, \{a\} \}
{ b,{ a}}
F
[
{
a
}
]
=
{
b
,
{
a
}
}
F[\{a\}] = \{ b, \{a\} \}
F[{ a}]={ b,{ a}}
2.
F
[
{
a
,
{
a
}
}
]
F[\{a, \{a\}\}]
F[{ a,{ a}}]
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The image on the set , yes
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The value range of the restriction on the set ,
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} The limit on the set is
{
<
a
,
b
>
,
<
a
,
{
a
}
>
,
<
{
a
}
,
{
a
,
{
a
}
}
>
}
\{ <a, b> , <a, \{ a \}> , <\{ a \} , \{ a, \{a\} \}> \}
{ <a,b>,<a,{ a}>,<{ a},{ a,{ a}}>} , Corresponding
F
F
F Assemble in
{
a
,
{
a
}
}
\{a, \{a\}\}
{ a,{ a}} On the set, it looks like
{
b
,
{
a
}
,
{
a
,
{
a
}
}
\{ b, \{a\} , \{ a, \{a\} \}
{ b,{ a},{ a,{ a}}
F
[
{
a
,
{
a
}
}
]
=
{
b
,
{
a
}
,
{
a
,
{
a
}
}
F[\{a, \{a\}\}] = \{ b, \{a\} , \{ a, \{a\} \}
F[{ a,{ a}}]={ b,{ a},{ a,{ a}}
3.
F
−
1
[
{
a
}
]
F^{-1}[\{a\}]
F−1[{ a}]
F
−
1
=
{
<
b
,
a
>
,
<
{
a
}
,
a
>
,
<
{
a
,
{
a
}
}
,
{
a
}
>
}
F^{-1} = \{ <b, a> , <\{a\}, a> , <\{a, \{a\}\}, \{a\} > \}
F−1={ <b,a>,<{ a},a>,<{ a,{ a}},{ a}>}
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} The image on the set , yes
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} The value range of the restriction on the set ,
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} The limit on the set is
∅
\varnothing
∅ , Corresponding
F
−
1
F^{-1}
F−1 Assemble in
{
a
}
\{a\}
{ a} On the set, it looks like
∅
\varnothing
∅
F
−
1
[
{
a
}
]
=
∅
F^{-1}[\{a\}] = \varnothing
F−1[{ a}]=∅
4.
F
−
1
[
{
{
a
}
}
]
F^{-1}[\{ \{a\} \}]
F−1[{ { a}}]
F
−
1
=
{
<
b
,
a
>
,
<
{
a
}
,
a
>
,
<
{
a
,
{
a
}
}
,
{
a
}
>
}
F^{-1} = \{ <b, a> , <\{a\}, a> , <\{a, \{a\}\}, \{a\} > \}
F−1={ <b,a>,<{ a},a>,<{ a,{ a}},{ a}>}
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} The image on the set , yes
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} The value range of the restriction on the set ,
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} The limit on the set is
<
{
a
}
,
a
>
<\{a\}, a>
<{ a},a> , Corresponding
F
−
1
F^{-1}
F−1 Assemble in
{
{
a
}
}
\{ \{a\} \}
{ { a}} On the set, it looks like
{
a
}
\{a\}
{ a}
F
−
1
[
{
{
a
}
}
]
=
{
a
}
F^{-1}[\{ \{a\} \}] = \{a\}
F−1[{ { a}}]={ a}
边栏推荐
- 金仓数据库KingbaseES 插件kdb_date_function
- The reason why the entity class in the database is changed into hump naming
- Smart contract security audit company selection analysis and audit report resources download - domestic article
- C primre plus Chapter 10 question 6 inverted array
- Number of uniform strings of leetcode simple problem
- 使用BENCHMARKSQL工具对kingbasees并发测试时kill掉主进程成功后存在子线程未及时关闭
- [set theory] binary relationship (special relationship type | empty relationship | identity relationship | global relationship | divisive relationship | size relationship)
- 2022 registration examination for safety production management personnel of hazardous chemical production units and examination skills for safety production management personnel of hazardous chemical
- [software testing-6] & Test Management
- data2vec! New milestone of unified mode
猜你喜欢

2022 registration of G2 utility boiler stoker examination and G2 utility boiler stoker reexamination examination

逆袭大学生的职业规划

How to retrieve the password for opening word files

使用BENCHMARKSQL工具对KingbaseES预热数据时执行:select sys_prewarm(‘NDX_OORDER_2 ‘)报错

Auman Galaxy new year of the tiger appreciation meeting was held in Beijing - won the double certification of "intelligent safety" and "efficient performance" of China Automotive Research Institute
![[literature reading] sparse in deep learning: practicing and growth for effective information and training in NN](/img/7e/50fa6f65b5a4f0bb60909f57daff56.png)
[literature reading] sparse in deep learning: practicing and growth for effective information and training in NN

FISCO bcos zero knowledge proof Fiat Shamir instance source code

Introduction of pointer variables in function parameters

Basic use of continuous integration server Jenkins

Golang -- realize file transfer
随机推荐
《牛客刷verilog》Part II Verilog进阶挑战
Joint search set: the number of points in connected blocks (the number of points in a set)
Design and implementation of JSP logistics center storage information management system
MC Layer Target
Small program animation realizes the running lantern and animation object
[dynamic programming] subsequence problem
After reviewing MySQL for a month, I was stunned when the interviewer of Alibaba asked me
金仓KFS数据双向同步场景部署
Leetcode simple problem delete an element to strictly increment the array
The least operation of leetcode simple problem makes the array increment
FuncS sh file not found when using the benchmarksql tool to test kingbases
2022 P cylinder filling test content and P cylinder filling simulation test questions
RSRS index timing and large and small disc rotation
联发科技2023届提前批IC笔试(题目)
智能合约安全审计公司选型分析和审计报告资源下载---国内篇
2022-02-13 (347. Top k high frequency elements)
[Thesis Writing] how to write the overall design of JSP tourism network
Kubernetes源码分析(一)
使用BENCHMARKSQL工具对kingbasees并发测试时kill掉主进程成功后存在子线程未及时关闭
[BMZCTF-pwn] 20-secret_ file