当前位置:网站首页>Automated machine learning pycaret: PyCaret Basic Auto Classification LightGBM
Automated machine learning pycaret: PyCaret Basic Auto Classification LightGBM
2022-08-01 00:03:00 【Artificial Intelligence Zeng Xiaojian】
from IPython.display import clear_output
!pip3 install pycaret --user
clear_output()!pip install numpy==1.20.0
import numpy as np
import pandas as pd
import random
import os
from pycaret.classification import *TRAIN_PATH = "../input/titanic/train.csv"
TEST_PATH = "../input/titanic/test.csv"
SAMPLE_SUBMISSION_PATH = "../input/titanic/gender_submission.csv"
SUBMISSION_PATH = "submission.csv"
ID = "PassengerId"
TARGET = "Survived"
SEED = 2022
def seed_everything(seed: int = SEED):
random.seed(seed)
np.random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
seed_everything()
import pandas as pd
train = pd.read_csv(TRAIN_PATH)
test = pd.read_csv(TEST_PATH)
test
setup(
data=train,
target=TARGET,
silent=True
)
({'lr': <pycaret.containers.models.classification.LogisticRegressionClassifierContainer at 0x7f2b6faa2950>,
'knn': <pycaret.containers.models.classification.KNeighborsClassifierContainer at 0x7f2b6faa2ad0>,
'nb': <pycaret.containers.models.classification.GaussianNBClassifierContainer at 0x7f2b6faa2790>,
'dt': <pycaret.containers.models.classification.DecisionTreeClassifierContainer at 0x7f2b6faa27d0>,
'svm': <pycaret.containers.models.classification.SGDClassifierContainer at 0x7f2b6faac990>,
'rbfsvm': <pycaret.containers.models.classification.SVCClassifierContainer at 0x7f2b6faac6d0>,
'gpc': <pycaret.containers.models.classification.GaussianProcessClassifierContainer at 0x7f2b6faac910>,
'mlp': <pycaret.containers.models.classification.MLPClassifierContainer at 0x7f2b6faac510>,
'ridge': <pycaret.containers.models.classification.RidgeClassifierContainer at 0x7f2b6fb3f750>,
'rf': <pycaret.containers.models.classification.RandomForestClassifierContainer at 0x7f2b6faa26d0>,
'qda': <pycaret.containers.models.classification.QuadraticDiscriminantAnalysisContainer at 0x7f2b6fb3f2d0>,
'ada': <pycaret.containers.models.classification.AdaBoostClassifierContainer at 0x7f2b6fb3f210>,
'gbc': <pycaret.containers.models.classification.GradientBoostingClassifierContainer at 0x7f2b6fb3ce10>,
'lda': <pycaret.containers.models.classification.LinearDiscriminantAnalysisContainer at 0x7f2b6faac610>,
'et': <pycaret.containers.models.classification.ExtraTreesClassifierContainer at 0x7f2b6fb3c910>,
'xgboost': <pycaret.containers.models.classification.XGBClassifierContainer at 0x7f2b6fb3ca10>,
'lightgbm': <pycaret.containers.models.classification.LGBMClassifierContainer at 0x7f2b6fb3c250>,
'catboost': <pycaret.containers.models.classification.CatBoostClassifierContainer at 0x7f2b6fb3c1d0>,
'dummy': <pycaret.containers.models.classification.DummyClassifierContainer at 0x7f2b6facd490>},
True,
150 0
547 1
125 1
779 1
183 1
..
370 1
317 0
351 0
339 0
289 1
Name: Survived, Length: 623, dtype: int64,
10,
8860,
'88e1',
Pipeline(memory=None, steps=[('empty_step', 'passthrough')], verbose=False),
False,
Age Fare Pclass_1 Pclass_2 Pclass_3 \
0 22.000000 7.250000 0.0 0.0 1.0
1 38.000000 71.283302 1.0 0.0 0.0
2 26.000000 7.925000 0.0 0.0 1.0
3 35.000000 53.099998 1.0 0.0 0.0
4 35.000000 8.050000 0.0 0.0 1.0
.. ... ... ... ... ...
886 27.000000 13.000000 0.0 1.0 0.0
887 19.000000 30.000000 1.0 0.0 0.0
888 29.466112 23.450001 0.0 0.0 1.0
889 26.000000 30.000000 1.0 0.0 0.0
890 32.000000 7.750000 0.0 0.0 1.0
Name_Aks Mrs. Sam (Leah Rosen) Name_Albimona Mr. Nassef Cassem \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
.. ... ...
886 0.0 0.0
887 0.0 0.0
888 0.0 0.0
889 0.0 0.0
890 0.0 0.0
Name_Ali Mr. Ahmed Name_Allen Mr. William Henry \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 1.0
.. ... ...
886 0.0 0.0
887 0.0 0.0
888 0.0 0.0
889 0.0 0.0
890 0.0 0.0 model = create_model('lightgbm')
tuneModel = tune_model(model,optimize = 'AUC') 
plot_model(tuneModel) 
plot_model(tuneModel, plot='feature') 
边栏推荐
猜你喜欢

C# Rectangle basic usage and picture cutting
![[1161. The maximum sum of elements in the layer]](/img/59/7810f425431779aa719458038ea0b3.png)
[1161. The maximum sum of elements in the layer]

Kyoto University:Masaki Waga | 黑箱环境中强化学习的动态屏蔽

【Acwing】The 62nd Weekly Game Solution

IJCAI2022 | 代数和逻辑约束的混合概率推理

高等代数_证明_任何矩阵都相似于一个上三角矩阵

Matlab / ArcGIS 处理GPM全球月均降水数据

Design of Fire and Anti-theft System Based on Single Chip GSM

cobaltstrike

Recommendation system: Summary of common evaluation indicators [accuracy rate, precision rate, recall rate, hit rate, (normalized depreciation cumulative gain) NDCG, mean reciprocal ranking (MRR), ROC
随机推荐
vim的基本使用概念
lua入门案例实战1234定义函数与标准函数库功能
Input and output optimization
开源好用的 流程图绘制工具 drawio
精心总结十三条建议,帮你创建更合适的MySQL索引
TFC CTF 2022 WEB Diamand WriteUp
内核对设备树的处理
[Cloud Residency Co-Creation] [HCSD Big Celebrity Live Broadcast] Personally teach the secrets of interviews in big factories
继承和友元,静态成员的关系
To help the construction of digital government, the three parties of China Science and Technology build a domain name security system
Flutter教程之 02 Flutter 桌面程序开发入门教程运行hello world (教程含源码)
Program processes and threads (concurrency and parallelism of threads) and basic creation and use of threads
对象缓存服务的思考和实现
Difference between first and take(1) operators in NgRx
Shell common scripts: Nexus batch upload local warehouse enhanced version script (strongly recommended)
The difference between adding or not adding the ref keyword when a variable of reference type is used as a parameter in a method call in C#
[1161. The maximum sum of elements in the layer]
面试突击69:TCP 可靠吗?为什么?
Flutter教程之 01配置环境并运行demo程序 (教程含源码)
IPD process terminology