当前位置:网站首页>Automated machine learning pycaret: PyCaret Basic Auto Classification LightGBM
Automated machine learning pycaret: PyCaret Basic Auto Classification LightGBM
2022-08-01 00:03:00 【Artificial Intelligence Zeng Xiaojian】
from IPython.display import clear_output
!pip3 install pycaret --user
clear_output()!pip install numpy==1.20.0
import numpy as np
import pandas as pd
import random
import os
from pycaret.classification import *TRAIN_PATH = "../input/titanic/train.csv"
TEST_PATH = "../input/titanic/test.csv"
SAMPLE_SUBMISSION_PATH = "../input/titanic/gender_submission.csv"
SUBMISSION_PATH = "submission.csv"
ID = "PassengerId"
TARGET = "Survived"
SEED = 2022
def seed_everything(seed: int = SEED):
random.seed(seed)
np.random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
seed_everything()
import pandas as pd
train = pd.read_csv(TRAIN_PATH)
test = pd.read_csv(TEST_PATH)
test
setup(
data=train,
target=TARGET,
silent=True
)
({'lr': <pycaret.containers.models.classification.LogisticRegressionClassifierContainer at 0x7f2b6faa2950>,
'knn': <pycaret.containers.models.classification.KNeighborsClassifierContainer at 0x7f2b6faa2ad0>,
'nb': <pycaret.containers.models.classification.GaussianNBClassifierContainer at 0x7f2b6faa2790>,
'dt': <pycaret.containers.models.classification.DecisionTreeClassifierContainer at 0x7f2b6faa27d0>,
'svm': <pycaret.containers.models.classification.SGDClassifierContainer at 0x7f2b6faac990>,
'rbfsvm': <pycaret.containers.models.classification.SVCClassifierContainer at 0x7f2b6faac6d0>,
'gpc': <pycaret.containers.models.classification.GaussianProcessClassifierContainer at 0x7f2b6faac910>,
'mlp': <pycaret.containers.models.classification.MLPClassifierContainer at 0x7f2b6faac510>,
'ridge': <pycaret.containers.models.classification.RidgeClassifierContainer at 0x7f2b6fb3f750>,
'rf': <pycaret.containers.models.classification.RandomForestClassifierContainer at 0x7f2b6faa26d0>,
'qda': <pycaret.containers.models.classification.QuadraticDiscriminantAnalysisContainer at 0x7f2b6fb3f2d0>,
'ada': <pycaret.containers.models.classification.AdaBoostClassifierContainer at 0x7f2b6fb3f210>,
'gbc': <pycaret.containers.models.classification.GradientBoostingClassifierContainer at 0x7f2b6fb3ce10>,
'lda': <pycaret.containers.models.classification.LinearDiscriminantAnalysisContainer at 0x7f2b6faac610>,
'et': <pycaret.containers.models.classification.ExtraTreesClassifierContainer at 0x7f2b6fb3c910>,
'xgboost': <pycaret.containers.models.classification.XGBClassifierContainer at 0x7f2b6fb3ca10>,
'lightgbm': <pycaret.containers.models.classification.LGBMClassifierContainer at 0x7f2b6fb3c250>,
'catboost': <pycaret.containers.models.classification.CatBoostClassifierContainer at 0x7f2b6fb3c1d0>,
'dummy': <pycaret.containers.models.classification.DummyClassifierContainer at 0x7f2b6facd490>},
True,
150 0
547 1
125 1
779 1
183 1
..
370 1
317 0
351 0
339 0
289 1
Name: Survived, Length: 623, dtype: int64,
10,
8860,
'88e1',
Pipeline(memory=None, steps=[('empty_step', 'passthrough')], verbose=False),
False,
Age Fare Pclass_1 Pclass_2 Pclass_3 \
0 22.000000 7.250000 0.0 0.0 1.0
1 38.000000 71.283302 1.0 0.0 0.0
2 26.000000 7.925000 0.0 0.0 1.0
3 35.000000 53.099998 1.0 0.0 0.0
4 35.000000 8.050000 0.0 0.0 1.0
.. ... ... ... ... ...
886 27.000000 13.000000 0.0 1.0 0.0
887 19.000000 30.000000 1.0 0.0 0.0
888 29.466112 23.450001 0.0 0.0 1.0
889 26.000000 30.000000 1.0 0.0 0.0
890 32.000000 7.750000 0.0 0.0 1.0
Name_Aks Mrs. Sam (Leah Rosen) Name_Albimona Mr. Nassef Cassem \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
.. ... ...
886 0.0 0.0
887 0.0 0.0
888 0.0 0.0
889 0.0 0.0
890 0.0 0.0
Name_Ali Mr. Ahmed Name_Allen Mr. William Henry \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 1.0
.. ... ...
886 0.0 0.0
887 0.0 0.0
888 0.0 0.0
889 0.0 0.0
890 0.0 0.0 model = create_model('lightgbm')
tuneModel = tune_model(model,optimize = 'AUC') 
plot_model(tuneModel) 
plot_model(tuneModel, plot='feature') 
边栏推荐
猜你喜欢
随机推荐
NIO编程
类和对象:上
Flink 1.13(八)CDC
手写一个简单的web服务器(B/S架构)
Matlab / Arcgis处理nc数据
程序进程和线程(线程的并发与并行)以及线程的基本创建和使用
qlib量化源码分析:qlib/qlib/contrib/model/gbdt.py
一文带你了解 Grafana 最新开源项目 Mimir 的前世今生
Network security - crack WiFi through handshake packets (detailed tutorial)
SQL注入 Less54(限制次数的SQL注入+union注入)
Mysql environment installation under Linux (centos)
开源好用的 流程图绘制工具 drawio
基于simulink的Active anti-islanding-AFD主动反孤岛模型仿真
/etc/sysconfig/network-scripts configure the network card
内核对设备树的处理
面试突击69:TCP 可靠吗?为什么?
一文概述:VPN的基本模型及业务类型
Components of TypeScript
[QNX Hypervisor 2.2 User Manual]9.16 system
Handwritten a simple web server (B/S architecture)







