当前位置:网站首页>Automated machine learning pycaret: PyCaret Basic Auto Classification LightGBM
Automated machine learning pycaret: PyCaret Basic Auto Classification LightGBM
2022-08-01 00:03:00 【Artificial Intelligence Zeng Xiaojian】
from IPython.display import clear_output
!pip3 install pycaret --user
clear_output()
!pip install numpy==1.20.0
import numpy as np
import pandas as pd
import random
import os
from pycaret.classification import *
TRAIN_PATH = "../input/titanic/train.csv"
TEST_PATH = "../input/titanic/test.csv"
SAMPLE_SUBMISSION_PATH = "../input/titanic/gender_submission.csv"
SUBMISSION_PATH = "submission.csv"
ID = "PassengerId"
TARGET = "Survived"
SEED = 2022
def seed_everything(seed: int = SEED):
random.seed(seed)
np.random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
seed_everything()
import pandas as pd
train = pd.read_csv(TRAIN_PATH)
test = pd.read_csv(TEST_PATH)
test
setup(
data=train,
target=TARGET,
silent=True
)
({'lr': <pycaret.containers.models.classification.LogisticRegressionClassifierContainer at 0x7f2b6faa2950>, 'knn': <pycaret.containers.models.classification.KNeighborsClassifierContainer at 0x7f2b6faa2ad0>, 'nb': <pycaret.containers.models.classification.GaussianNBClassifierContainer at 0x7f2b6faa2790>, 'dt': <pycaret.containers.models.classification.DecisionTreeClassifierContainer at 0x7f2b6faa27d0>, 'svm': <pycaret.containers.models.classification.SGDClassifierContainer at 0x7f2b6faac990>, 'rbfsvm': <pycaret.containers.models.classification.SVCClassifierContainer at 0x7f2b6faac6d0>, 'gpc': <pycaret.containers.models.classification.GaussianProcessClassifierContainer at 0x7f2b6faac910>, 'mlp': <pycaret.containers.models.classification.MLPClassifierContainer at 0x7f2b6faac510>, 'ridge': <pycaret.containers.models.classification.RidgeClassifierContainer at 0x7f2b6fb3f750>, 'rf': <pycaret.containers.models.classification.RandomForestClassifierContainer at 0x7f2b6faa26d0>, 'qda': <pycaret.containers.models.classification.QuadraticDiscriminantAnalysisContainer at 0x7f2b6fb3f2d0>, 'ada': <pycaret.containers.models.classification.AdaBoostClassifierContainer at 0x7f2b6fb3f210>, 'gbc': <pycaret.containers.models.classification.GradientBoostingClassifierContainer at 0x7f2b6fb3ce10>, 'lda': <pycaret.containers.models.classification.LinearDiscriminantAnalysisContainer at 0x7f2b6faac610>, 'et': <pycaret.containers.models.classification.ExtraTreesClassifierContainer at 0x7f2b6fb3c910>, 'xgboost': <pycaret.containers.models.classification.XGBClassifierContainer at 0x7f2b6fb3ca10>, 'lightgbm': <pycaret.containers.models.classification.LGBMClassifierContainer at 0x7f2b6fb3c250>, 'catboost': <pycaret.containers.models.classification.CatBoostClassifierContainer at 0x7f2b6fb3c1d0>, 'dummy': <pycaret.containers.models.classification.DummyClassifierContainer at 0x7f2b6facd490>}, True, 150 0 547 1 125 1 779 1 183 1 .. 370 1 317 0 351 0 339 0 289 1 Name: Survived, Length: 623, dtype: int64, 10, 8860, '88e1', Pipeline(memory=None, steps=[('empty_step', 'passthrough')], verbose=False), False, Age Fare Pclass_1 Pclass_2 Pclass_3 \ 0 22.000000 7.250000 0.0 0.0 1.0 1 38.000000 71.283302 1.0 0.0 0.0 2 26.000000 7.925000 0.0 0.0 1.0 3 35.000000 53.099998 1.0 0.0 0.0 4 35.000000 8.050000 0.0 0.0 1.0 .. ... ... ... ... ... 886 27.000000 13.000000 0.0 1.0 0.0 887 19.000000 30.000000 1.0 0.0 0.0 888 29.466112 23.450001 0.0 0.0 1.0 889 26.000000 30.000000 1.0 0.0 0.0 890 32.000000 7.750000 0.0 0.0 1.0 Name_Aks Mrs. Sam (Leah Rosen) Name_Albimona Mr. Nassef Cassem \ 0 0.0 0.0 1 0.0 0.0 2 0.0 0.0 3 0.0 0.0 4 0.0 0.0 .. ... ... 886 0.0 0.0 887 0.0 0.0 888 0.0 0.0 889 0.0 0.0 890 0.0 0.0 Name_Ali Mr. Ahmed Name_Allen Mr. William Henry \ 0 0.0 0.0 1 0.0 0.0 2 0.0 0.0 3 0.0 0.0 4 0.0 1.0 .. ... ... 886 0.0 0.0 887 0.0 0.0 888 0.0 0.0 889 0.0 0.0 890 0.0 0.0
model = create_model('lightgbm')
tuneModel = tune_model(model,optimize = 'AUC')
plot_model(tuneModel)
plot_model(tuneModel, plot='feature')
边栏推荐
- Shell常用脚本:Nexus批量上传本地仓库脚本
- Web API 介绍和类型
- 博弈论(Depu)与孙子兵法(42/100)
- Carefully organize 16 MySQL usage specifications to reduce problems by 80% and recommend sharing with the team
- 类和对象:中
- thymeleaf迭代map集合
- 推荐系统:常用评价指标总结【准确率、精确率、召回率、命中率、(归一化折损累计增益)NDCG、平均倒数排名(MRR)、ROC曲线、AUC(ROC曲线下的面积)、P-R曲线、A/B测试】
- 面试题:实现死锁
- 消息队列存储消息数据的MySQL表格
- 浏览器下载快捷方式到桌面(PWA)
猜你喜欢
类和对象:上
Program processes and threads (concurrency and parallelism of threads) and basic creation and use of threads
[MATLAB project combat] LDPC-BP channel coding
/etc/sysconfig/network-scripts configure the network card
硬件设备计算存储及数据交互杂谈
自动化机器学习pycaret: PyCaret Basic Auto Classification LightGBM
Shell常用脚本:Nexus批量上传本地仓库增强版脚本(强烈推荐)
类和对象:中
力扣二叉树
Shell常用脚本:Nexus批量上传本地仓库脚本
随机推荐
什么是动态规划,什么是背包问题
NIO编程
SVN服务器搭建+SVN客户端+TeamCity集成环境搭建+VS2019开发
NIO programming
网络安全--通过握手包破解WiFi(详细教程)
TFC CTF 2022 WEB Diamand WriteUp
SQL注入 Less47(报错注入) 和Less49(时间盲注)
【FPGA教程案例43】图像案例3——通过verilog实现图像sobel边缘提取,通过MATLAB进行辅助验证
C# Rectangle基本用法和图片切割
SQL injection Less42 (POST type stack injection)
Difference Between Stateless and Stateful
编程语言是什么
Mysql environment installation under Linux (centos)
[微服务]分布式事务解决方案-Seata
mysql having的用法
面试突击69:TCP 可靠吗?为什么?
pycaret源码分析:下载数据集\Lib\site-packages\pycaret\datasets.py
thymeleaf迭代map集合
IPD process terminology
Recommendation system: Summary of common evaluation indicators [accuracy rate, precision rate, recall rate, hit rate, (normalized depreciation cumulative gain) NDCG, mean reciprocal ranking (MRR), ROC