当前位置:网站首页>Automated machine learning pycaret: PyCaret Basic Auto Classification LightGBM
Automated machine learning pycaret: PyCaret Basic Auto Classification LightGBM
2022-08-01 00:03:00 【Artificial Intelligence Zeng Xiaojian】
from IPython.display import clear_output
!pip3 install pycaret --user
clear_output()!pip install numpy==1.20.0
import numpy as np
import pandas as pd
import random
import os
from pycaret.classification import *TRAIN_PATH = "../input/titanic/train.csv"
TEST_PATH = "../input/titanic/test.csv"
SAMPLE_SUBMISSION_PATH = "../input/titanic/gender_submission.csv"
SUBMISSION_PATH = "submission.csv"
ID = "PassengerId"
TARGET = "Survived"
SEED = 2022
def seed_everything(seed: int = SEED):
random.seed(seed)
np.random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
seed_everything()
import pandas as pd
train = pd.read_csv(TRAIN_PATH)
test = pd.read_csv(TEST_PATH)
test
setup(
data=train,
target=TARGET,
silent=True
)
({'lr': <pycaret.containers.models.classification.LogisticRegressionClassifierContainer at 0x7f2b6faa2950>,
'knn': <pycaret.containers.models.classification.KNeighborsClassifierContainer at 0x7f2b6faa2ad0>,
'nb': <pycaret.containers.models.classification.GaussianNBClassifierContainer at 0x7f2b6faa2790>,
'dt': <pycaret.containers.models.classification.DecisionTreeClassifierContainer at 0x7f2b6faa27d0>,
'svm': <pycaret.containers.models.classification.SGDClassifierContainer at 0x7f2b6faac990>,
'rbfsvm': <pycaret.containers.models.classification.SVCClassifierContainer at 0x7f2b6faac6d0>,
'gpc': <pycaret.containers.models.classification.GaussianProcessClassifierContainer at 0x7f2b6faac910>,
'mlp': <pycaret.containers.models.classification.MLPClassifierContainer at 0x7f2b6faac510>,
'ridge': <pycaret.containers.models.classification.RidgeClassifierContainer at 0x7f2b6fb3f750>,
'rf': <pycaret.containers.models.classification.RandomForestClassifierContainer at 0x7f2b6faa26d0>,
'qda': <pycaret.containers.models.classification.QuadraticDiscriminantAnalysisContainer at 0x7f2b6fb3f2d0>,
'ada': <pycaret.containers.models.classification.AdaBoostClassifierContainer at 0x7f2b6fb3f210>,
'gbc': <pycaret.containers.models.classification.GradientBoostingClassifierContainer at 0x7f2b6fb3ce10>,
'lda': <pycaret.containers.models.classification.LinearDiscriminantAnalysisContainer at 0x7f2b6faac610>,
'et': <pycaret.containers.models.classification.ExtraTreesClassifierContainer at 0x7f2b6fb3c910>,
'xgboost': <pycaret.containers.models.classification.XGBClassifierContainer at 0x7f2b6fb3ca10>,
'lightgbm': <pycaret.containers.models.classification.LGBMClassifierContainer at 0x7f2b6fb3c250>,
'catboost': <pycaret.containers.models.classification.CatBoostClassifierContainer at 0x7f2b6fb3c1d0>,
'dummy': <pycaret.containers.models.classification.DummyClassifierContainer at 0x7f2b6facd490>},
True,
150 0
547 1
125 1
779 1
183 1
..
370 1
317 0
351 0
339 0
289 1
Name: Survived, Length: 623, dtype: int64,
10,
8860,
'88e1',
Pipeline(memory=None, steps=[('empty_step', 'passthrough')], verbose=False),
False,
Age Fare Pclass_1 Pclass_2 Pclass_3 \
0 22.000000 7.250000 0.0 0.0 1.0
1 38.000000 71.283302 1.0 0.0 0.0
2 26.000000 7.925000 0.0 0.0 1.0
3 35.000000 53.099998 1.0 0.0 0.0
4 35.000000 8.050000 0.0 0.0 1.0
.. ... ... ... ... ...
886 27.000000 13.000000 0.0 1.0 0.0
887 19.000000 30.000000 1.0 0.0 0.0
888 29.466112 23.450001 0.0 0.0 1.0
889 26.000000 30.000000 1.0 0.0 0.0
890 32.000000 7.750000 0.0 0.0 1.0
Name_Aks Mrs. Sam (Leah Rosen) Name_Albimona Mr. Nassef Cassem \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
.. ... ...
886 0.0 0.0
887 0.0 0.0
888 0.0 0.0
889 0.0 0.0
890 0.0 0.0
Name_Ali Mr. Ahmed Name_Allen Mr. William Henry \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 1.0
.. ... ...
886 0.0 0.0
887 0.0 0.0
888 0.0 0.0
889 0.0 0.0
890 0.0 0.0 model = create_model('lightgbm')
tuneModel = tune_model(model,optimize = 'AUC') 
plot_model(tuneModel) 
plot_model(tuneModel, plot='feature') 
边栏推荐
- 2022-07-31:给出一个有n个点,m条有向边的图, 你可以施展魔法,把有向边,变成无向边, 比如A到B的有向边,权重为7。施展魔法之后,A和B通过该边到达彼此的代价都是7。 求,允许施展一次魔法
- thymeleaf iterates the map collection
- TFC CTF 2022 WEB Diamand WriteUp
- 助力数字政府建设,中科三方构建域名安全保障体系
- Web API 介绍和类型
- IJCAI2022 | 代数和逻辑约束的混合概率推理
- [AMEX] LGBM Optuna美国运通信用卡欺诈赛 kaggle
- SQL injection Less47 (error injection) and Less49 (time blind injection)
- 消息队列消息存储设计(架构实战营 模块八作业)
- Daily--Kali opens SSH (detailed tutorial)
猜你喜欢

Handwritten a simple web server (B/S architecture)
![[AMEX] LGBM Optuna美国运通信用卡欺诈赛 kaggle](/img/64/55af53a3d9dc1162490d613fe8a436.png)
[AMEX] LGBM Optuna美国运通信用卡欺诈赛 kaggle

日常--Kali开启SSH(详细教程)

【MATLAB项目实战】LDPC-BP信道编码

编译型语言和解释型语言的区别

自动化机器学习pycaret: PyCaret Basic Auto Classification LightGBM

UOS - WindTerm use

TFC CTF 2022 WEB Diamand WriteUp

What is customer profile management?

Google Earth Engine——Error: Image.clipToBoundsAndScale, argument ‘input‘: Invalid type的错误解决
随机推荐
编写方法将一个数组扁平化并且去重和递增排序
NIO programming
Web API 介绍和类型
周总结
Shell common script: Nexus batch upload local warehouse script
Components of TypeScript
推荐系统:常用评价指标总结【准确率、精确率、召回率、命中率、(归一化折损累计增益)NDCG、平均倒数排名(MRR)、ROC曲线、AUC(ROC曲线下的面积)、P-R曲线、A/B测试】
22年8月推广大使额外奖励规则
基于simulink的Passive anti-islanding-UVP/OVP and UFP/OFP被动反孤岛模型仿真
【Acwing】第62场周赛 题解
2022年CSP-J1 CSP-S1 第1轮初赛 报名指南
SVN服务器搭建+SVN客户端+TeamCity集成环境搭建+VS2019开发
景区手绘地图的绘制流程
Kyoto University:Masaki Waga | 黑箱环境中强化学习的动态屏蔽
虚继承的原理
Input and output optimization
博弈论(Depu)与孙子兵法(42/100)
vector的基本实现
Keil nRF52832 download failed
如何撰写出一篇优质的数码类好物推荐文