当前位置:网站首页>2021 postgraduate entrance examination mathematics 2 linear algebra
2021 postgraduate entrance examination mathematics 2 linear algebra
2022-07-03 11:04:00 【hflag168】
2021 Graduate school entrance examination, number two linear algebra
One choice question ( Every little question 5 branch )
Quadratic type f ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 ) 2 + ( x 2 + x 3 ) 2 − ( x 3 − x 1 ) 2 f(x_1, x_2, x_3)=(x_1+x_2)^2 + (x_2+x_3)^2-(x_3-x_1)^2 f(x1,x2,x3)=(x1+x2)2+(x2+x3)2−(x3−x1)2 The positive inertia index and negative inertia index of are
A) 2, 0. B) 1,1. C) 2,1. D) 1,2.
Let third-order matrix A = ( α 1 , α 2 , α 3 ) A=(\alpha_1, \alpha_2,\alpha_3) A=(α1,α2,α3), B = ( β 1 , β 2 , β 3 ) B=(\beta_1, \beta_2, \beta_3) B=(β1,β2,β3), If the vector group α 1 , α 2 , α 3 \alpha_1, \alpha_2, \alpha_3 α1,α2,α3 Can be β 1 , β 2 \beta_1, \beta_2 β1,β2 The linear table out , be
A) Ax=0 All solutions of are Bx=0 Solution
B) A T x = 0 A^Tx=0 ATx=0 All solutions of are B T x = 0 B^Tx=0 BTx=0 Solution .
C) Bx=0 All solutions of are Ax=0 Solution .
D) B T x = 0 B^Tx=0 BTx=0 All solutions of are A T x = 0 A^Tx=0 ATx=0 Solution .
Known matrix A = ( 1 0 − 1 2 − 1 1 − 1 2 − 5 ) A=\begin{pmatrix} 1 & 0 &-1 \\ 2 & -1 & 1\\ -1 & 2 & -5 \end{pmatrix} A=⎝⎛12−10−12−11−5⎠⎞ If lower triangular invertible matrix P And upper triangular invertible matrix Q, send PAQ Is the focus matrix , be P, Q You can take... Separately
A) ( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix}1&0&0\\ 0&1&0\\0&0&1 \end{pmatrix} ⎝⎛100010001⎠⎞, ( 1 0 1 0 1 3 0 0 1 ) \begin{pmatrix} 1 & 0&1\\ 0& 1&3\\0&0&1\end{pmatrix} ⎝⎛100010131⎠⎞. B) ( 1 0 0 2 − 1 0 − 3 2 1 ) \begin{pmatrix}1&0&0\\ 2& -1& 0\\ -3&2&1 \end{pmatrix} ⎝⎛12−30−12001⎠⎞, ( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix} 1&0&0\\ 0&1&0\\0&0&1\end{pmatrix} ⎝⎛100010001⎠⎞.
C) ( 1 0 0 2 − 1 0 − 3 2 1 ) \begin{pmatrix} 1&0&0\\2&-1&0\\-3&2&1\end{pmatrix} ⎝⎛12−30−12001⎠⎞, ( 1 0 1 0 1 3 0 0 1 ) \begin{pmatrix}1&0&1\\0&1&3\\0&0&1 \end{pmatrix} ⎝⎛100010131⎠⎞. D) ( 1 0 0 0 1 0 1 3 1 ) \begin{pmatrix} 1&0&0\\0&1&0\\ 1&3&1\end{pmatrix} ⎝⎛101013001⎠⎞, ( 1 2 − 3 0 − 1 2 0 0 1 ) \begin{pmatrix} 1&2 &-3\\0&-1&2\\0&0&1\end{pmatrix} ⎝⎛1002−10−321⎠⎞.
Two Completion
- polynomial f ( x ) = ∣ x x 1 2 x 1 x 2 − 1 2 1 x 1 2 − 1 1 x ∣ f(x)=\begin{vmatrix}x&x&1&2x\\1&x&2&-1\\2&1&x&1\\2&-1&1&x \end{vmatrix} f(x)=∣∣∣∣∣∣∣∣x122xx1−112x12x−11x∣∣∣∣∣∣∣∣ in x 3 x^3 x3 The coefficient of the term is ___________________________.(6 branch )
3、 ... and Answer the question
- Let's set the matrix A = ( 2 1 0 1 2 0 1 a b ) A=\begin{pmatrix}2&1&0\\1&2&0\\1&a&b \end{pmatrix} A=⎝⎛21112a00b⎠⎞ There are only two different eigenvalues . if A Similar to diagonal matrix , seek a , b a, b a,b Value , And find the reversible matrix P, bring P − 1 A P P^{-1}AP P−1AP It's a diagonal matrix .(12 branch )
analysis : This question mainly examines candidates' mastery of the theory of similar diagonalization of general matrices . The knowledge points involved include :
Eigenvalues and eigenvectors ( Basic knowledge of )
General matrix similar diagonalization theory : If all eigenvalues of a matrix are different , Then it must be similar diagonalization ; When a matrix exists k When the eigenvalue is repeated , as long as k Multiple eigenvalues correspond to k A linear independent eigenvector , Then the matrix can still be similarly diagonalized .
answer :
∣ 2 − λ 1 0 1 2 − λ 0 1 a b − λ ∣ \begin{vmatrix} 2-\lambda&1&0\\ 1& 2-\lambda&0\\1&a&b-\lambda\end{vmatrix} ∣∣∣∣∣∣2−λ1112−λa00b−λ∣∣∣∣∣∣= ( b − λ ) ( λ − 1 ) ( λ − 3 ) (b-\lambda)(\lambda-1)(\lambda-3) (b−λ)(λ−1)(λ−3)
Because the matrix A There are only two different eigenvalues , So when 1 When it is a multiple eigenvalue , λ 1 = λ 2 = 1 , λ 3 = 3 \lambda_1=\lambda_2=1, \lambda_3=3 λ1=λ2=1,λ3=3, be b=1. here
( A − E ) = ( 1 1 0 1 1 0 1 a 1 ) → ( 1 1 0 1 a 1 0 0 0 ) (A-E)=\begin{pmatrix}1&1&0\\1&1&0\\1&a&1 \end{pmatrix}\rightarrow\begin{pmatrix}1&1&0\\1&a&1\\0&0&0 \end{pmatrix} (A−E)=⎝⎛11111a001⎠⎞→⎝⎛1101a0010⎠⎞ → ( 1 1 0 0 a − 1 1 0 0 0 ) \rightarrow \begin{pmatrix}1&1&0\\ 0&a-1&1\\0&0&0\end{pmatrix} →⎝⎛1001a−10010⎠⎞
be r(A-E)=2, This means matrix A The double eigenvalue of is 1 when , Only a linear independent eigenvector , matrix A Cannot be similar to diagonal matrix . Conflict with known .
Then you can choose λ 1 = 1 , λ 2 = λ 3 = 3 \lambda_1=1, \lambda_2=\lambda_3=3 λ1=1,λ2=λ3=3, be b=3. here
( A − 3 E ) = ( − 1 1 0 1 − 1 0 1 a 0 ) (A-3E)=\begin{pmatrix}-1&1&0\\1&-1&0\\1&a&0\end{pmatrix} (A−3E)=⎝⎛−1111−1a000⎠⎞ → ( 1 − 1 0 1 a 0 0 0 0 ) \rightarrow \begin{pmatrix} 1&-1&0\\ 1&a&0\\0&0&0\end{pmatrix} →⎝⎛110−1a0000⎠⎞ → ( 1 − 1 0 0 a + 1 0 0 0 0 ) \rightarrow \begin{pmatrix} 1&-1&0\\ 0&a+1&0\\0&0&0\end{pmatrix} →⎝⎛100−1a+10000⎠⎞
Then when r ( A − 3 E ) = 1 r(A-3E)=1 r(A−3E)=1 when , Double eigenvalue 3 It corresponds to two linear independent eigenvectors , here a = − 1 a=-1 a=−1.
So you can get : a = − 1 , b = 3 a=-1, b=3 a=−1,b=3 . Now the matrix A = ( 2 1 0 1 2 0 1 − 1 3 ) A=\begin{pmatrix}2&1&0\\1&2&0\\1&-1&3\end{pmatrix} A=⎝⎛21112−1003⎠⎞
When λ 1 = 1 \lambda_1=1 λ1=1 when , The corresponding eigenvector is obtained as ζ 1 = ( − 1 , 1 , 1 ) T \zeta_1=(-1, 1, 1)^T ζ1=(−1,1,1)T
When λ 2 = λ 3 = 3 \lambda_2=\lambda_3=3 λ2=λ3=3 when , The corresponding linear independent eigenvector is obtained as ζ 2 = ( 1 , 1 , 0 ) T , ζ 3 = ( 0 , 0 , 1 ) T \zeta_2=(1,1,0)^T, \zeta_3=(0,0,1)^T ζ2=(1,1,0)T,ζ3=(0,0,1)T
Make P = ( ζ 1 , ζ 2 , ζ 3 ) = ( − 1 1 0 1 1 0 1 0 1 ) P=(\zeta_1, \zeta_2, \zeta_3)=\begin{pmatrix} -1&1&0\\1&1&0\\1&0&1\end{pmatrix} P=(ζ1,ζ2,ζ3)=⎝⎛−111110001⎠⎞ Then there are P − 1 A P = ( 1 3 3 ) P^{-1}AP=\begin{pmatrix} 1&&\\&3&\\&&3\end{pmatrix} P−1AP=⎝⎛133⎠⎞ For diagonal matrix .
explain :
- Test questions transferred from China Postgraduate Entrance Examination Network .
- The purpose of reprint is for teaching .
边栏推荐
- 做软件测试三年,薪资不到20K,今天,我提出了辞职…
- First line of code kotlin notes
- snownlp情感分析
- 多路IO转接——前导
- glassfish org. h2.server. Shutdownhandler classnotfoundexception exception exception handling
- Redis notes 01: Introduction
- Pour vous amener dans le monde des bases de données natives du cloud
- QT:QSS自定义QListView实例
- . Net core - a queuing system for wechat official account
- QT:QSS自定义 QStatusBar实例
猜你喜欢
有些能力,是工作中学不来的,看看这篇超过90%同行
How to realize automatic testing in embedded software testing?
正常一英寸25.4厘米,在影像领域是16厘米
MySQL checks for automatic updates at 0:00 every day
Exclusive analysis | truth about resume and interview
我对测试工作的一些认识(资深测试人员总结)
MAUI Developer Day in GCR
I have been doing software testing for three years, and my salary is less than 20K. Today, I put forward my resignation
Programming examples of stm32f1 and stm32subeide -tm1637 drives 4-bit 7-segment nixie tubes
Cause: org. apache. ibatis. builder. Builderexception: error parsing SQL mapper configuration problem analysis
随机推荐
QT:QSS自定义 QStatusBar实例
Qt:qss custom QSlider instance
QT:QSS自定义QTableView实例
Do you really need automated testing?
QT:QSS自定义 QSplitter实例
Differences among norm, normalize and normalized in eigen
Software testing redis database
Windows security center open blank
QT:QSS自定义 QMenuBar实例
8年测试工程师总结出来的《测试核心价值》与《0基础转行软件测试超全学习指南》
ConstraintLayout跟RelativeLayout嵌套出现的莫名奇妙的问题
Flink chain conditional source code analysis
测试Leader应该做哪些事
Qt:qss custom qlistview instance
Is pinduogai's sales safe in 2022?
Promoted, colleagues become subordinates and don't cooperate with work
Latest sales volume of pinduoduo
Some abilities can't be learned from work. Look at this article, more than 90% of peers
What is the salary level of 17k? Let's take a look at the whole interview process of post-95 Test Engineers
ExecutorException: Statement returned more than one row, where no more than one was expected.