当前位置:网站首页>Scala104 - Built-in datetime functions for Spark.sql
Scala104 - Built-in datetime functions for Spark.sql
2022-08-04 18:32:00 【51CTO】
Sometimes we use it directlydf.createOrReplaceTempView(temp)创建临时表,用sql去计算.sparkSQL有些语法和hql不一样,做个笔记.
- <scala.version>2.11.12</scala.version>
- <spark.version>2.4.3</spark.version>
val
builder
=
SparkSession
.
builder()
.
appName(
"learningScala")
.
config(
"spark.executor.heartbeatInterval",
"60s")
.
config(
"spark.network.timeout",
"120s")
.
config(
"spark.serializer",
"org.apache.spark.serializer.KryoSerializer")
.
config(
"spark.kryoserializer.buffer.max",
"512m")
.
config(
"spark.dynamicAllocation.enabled",
false)
.
config(
"spark.sql.inMemoryColumnarStorage.compressed",
true)
.
config(
"spark.sql.inMemoryColumnarStorage.batchSize",
10000)
.
config(
"spark.sql.broadcastTimeout",
600)
.
config(
"spark.sql.autoBroadcastJoinThreshold",
-
1)
.
config(
"spark.sql.crossJoin.enabled",
true)
.
master(
"local[*]")
val
spark
=
builder.
getOrCreate()
spark.
sparkContext.
setLogLevel(
"ERROR")
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
builder: org.apache.spark.sql.SparkSession.Builder = [email protected]
spark: org.apache.spark.sql.SparkSession = [email protected]
- 1.
- 2.
var
df1
=
Seq(
(
1,
"2019-04-01 11:45:50",
11.15,
"2019-04-02 11:45:49"),
(
2,
"2019-05-02 11:56:50",
10.37,
"2019-05-02 11:56:51"),
(
3,
"2019-07-21 12:45:50",
12.11,
"2019-08-21 12:45:50"),
(
4,
"2019-08-01 12:40:50",
14.50,
"2020-08-03 12:40:50"),
(
5,
"2019-01-06 10:00:50",
16.39,
"2019-01-05 10:00:50")
).
toDF(
"id",
"startTimeStr",
"payamount",
"endTimeStr")
df1
=
df1.
withColumn(
"startTime",
$
"startTimeStr".
cast(
"Timestamp"))
.
withColumn(
"endTime",
$
"endTimeStr".
cast(
"Timestamp"))
df1.
printSchema
df1.
show()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
root
|-- id: integer (nullable = false)
|-- startTimeStr: string (nullable = true)
|-- payamount: double (nullable = false)
|-- endTimeStr: string (nullable = true)
|-- startTime: timestamp (nullable = true)
|-- endTime: timestamp (nullable = true)
+---+-------------------+---------+-------------------+-------------------+-------------------+
| id| startTimeStr|payamount| endTimeStr| startTime| endTime|
+---+-------------------+---------+-------------------+-------------------+-------------------+
| 1|2019-04-01 11:45:50| 11.15|2019-04-02 11:45:49|2019-04-01 11:45:50|2019-04-02 11:45:49|
| 2|2019-05-02 11:56:50| 10.37|2019-05-02 11:56:51|2019-05-02 11:56:50|2019-05-02 11:56:51|
| 3|2019-07-21 12:45:50| 12.11|2019-08-21 12:45:50|2019-07-21 12:45:50|2019-08-21 12:45:50|
| 4|2019-08-01 12:40:50| 14.5|2020-08-03 12:40:50|2019-08-01 12:40:50|2020-08-03 12:40:50|
| 5|2019-01-06 10:00:50| 16.39|2019-01-05 10:00:50|2019-01-06 10:00:50|2019-01-05 10:00:50|
+---+-------------------+---------+-------------------+-------------------+-------------------+
df1: org.apache.spark.sql.DataFrame = [id: int, startTimeStr: string ... 4 more fields]
df1: org.apache.spark.sql.DataFrame = [id: int, startTimeStr: string ... 4 more fields]
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
timestamp转string
把timestampConvert to the corresponding format string
- date_format把timestamp转换成对应的字符串
- String format is used"yyyyMMdd"表示
root
|-- yyyyMMdd: string (nullable = true)
|-- yyyy_MM_dd: string (nullable = true)
|-- yyyy: string (nullable = true)
+--------+----------+----+
|yyyyMMdd|yyyy_MM_dd|yyyy|
+--------+----------+----+
|20190401|2019-04-01|2019|
|20190502|2019-05-02|2019|
|20190721|2019-07-21|2019|
|20190801|2019-08-01|2019|
|20190106|2019-01-06|2019|
+--------+----------+----+
sql: String =
"
SELECT date_format(startTime,'yyyyMMdd') AS yyyyMMdd,
date_format(startTime,'yyyy-MM-dd') AS yyyy_MM_dd,
date_format(startTime,'yyyy') AS yyyy
FROM TEMP
"
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
timestamp转date
- to_date可以把timestamp转换成date类型
root
|-- startTime: timestamp (nullable = true)
|-- endTime: timestamp (nullable = true)
|-- startDate: date (nullable = true)
|-- endDate: date (nullable = true)
+-------------------+-------------------+----------+----------+
| startTime| endTime| startDate| endDate|
+-------------------+-------------------+----------+----------+
|2019-04-01 11:45:50|2019-04-02 11:45:49|2019-04-01|2019-04-02|
|2019-05-02 11:56:50|2019-05-02 11:56:51|2019-05-02|2019-05-02|
|2019-07-21 12:45:50|2019-08-21 12:45:50|2019-07-21|2019-08-21|
|2019-08-01 12:40:50|2020-08-03 12:40:50|2019-08-01|2020-08-03|
|2019-01-06 10:00:50|2019-01-05 10:00:50|2019-01-06|2019-01-05|
+-------------------+-------------------+----------+----------+
sql: String =
SELECT startTime,endTime,
to_date(startTime) AS startDate,
to_date(endTime) AS endDate
FROM TEMP
df2: org.apache.spark.sql.DataFrame = [startTime: timestamp, endTime: timestamp ... 2 more fields]
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
求时间差
- Day difference functiondatediff可以应用在timestamp中,Can also be applied in date类型中,The unit is natural days,而不是24小时
- month difference functionmonths_between同样可以,The monthly unit does not seem to be fixed,即31天or30天
df2.
createOrReplaceTempView(
"temp")
var
sql
=
"""
SELECT startTime,
endTime,
datediff(endTime,startTime) AS dayInterval1,
datediff(endDate,startDate) AS dayInterval2,
months_between(endTime,startTime) AS monthInterval1,
months_between(endDate,startDate) AS monthInterval2
FROM TEMP
"""
// spark.sql(sql).printSchema
spark.
sql(
sql).
show()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
+-------------------+-------------------+------------+------------+--------------+--------------+
| startTime| endTime|dayInterval1|dayInterval2|monthInterval1|monthInterval2|
+-------------------+-------------------+------------+------------+--------------+--------------+
|2019-04-01 11:45:50|2019-04-02 11:45:49| 1| 1| 0.03225769| 0.03225806|
|2019-05-02 11:56:50|2019-05-02 11:56:51| 0| 0| 0.0| 0.0|
|2019-07-21 12:45:50|2019-08-21 12:45:50| 31| 31| 1.0| 1.0|
|2019-08-01 12:40:50|2020-08-03 12:40:50| 368| 368| 12.06451613| 12.06451613|
|2019-01-06 10:00:50|2019-01-05 10:00:50| -1| -1| -0.03225806| -0.03225806|
+-------------------+-------------------+------------+------------+--------------+--------------+
sql: String =
"
SELECT startTime,
endTime,
datediff(endTime,startTime) AS dayInterval1,
datediff(endDate,startDate) AS dayInterval2,
months_between(endTime,startTime) AS monthInterval1,
months_between(endDate,startDate) AS monthInterval2
FROM TEMP
"
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
Ref
2020-03-24 于南京市江宁区九龙湖
边栏推荐
猜你喜欢

Day018 继承

leetcode 14. 最长公共前缀

How does EasyCVR call the double-speed playback of device recording through the interface?

The Industrial Metaverse Brings Changes to Industry

PHP代码审计10—命令执行漏洞

leetcode 13. 罗马数字转整数

谷歌开源芯片 180 纳米制造工艺

BigDecimal 使用注意!!“别踩坑”

Investigation and Research Based on the Involution Behavior of College Students

斯坦福:未来的RGB LED可以贴在你的皮肤上
随机推荐
buuctf(探险1)
Go 言 Go 语,一文看懂 Go 语言文件操作
Documentary on Security Reinforcement of Network Range Monitoring System (1)—SSL/TLS Encrypted Transmission of Log Data
YOLOv7-Pose尝鲜,基于YOLOv7的关键点模型测评
2018读书记
The Industrial Metaverse Brings Changes to Industry
How to recruit programmers
Interval greedy (interval merge)
Web端即时通讯技术:WebSocket、socket.io、SSE
袋鼠云思枢:数驹DTengine,助力企业构建高效的流批一体数据湖计算平台
DOM Clobbering的原理及应用
基于 eBPF 的 Kubernetes 可观测实践
C#爬虫之通过Selenium获取浏览器请求响应结果
【web自动化测试】Playwright快速入门,5分钟上手
LVS+NAT 负载均衡群集,NAT模式部署
powershell和cmd对比
【杰神说说】物联大师2.0版本预告
Global electronics demand slows: Samsung's Vietnam plant significantly reduces capacity
Introduction of three temperature measurement methods for PT100 platinum thermal resistance
vantui 组件 van-field 路由切换时,字体样式混乱问题