当前位置:网站首页>Pytorch Daily Practice - Predicting Surviving Passengers on the Titanic
Pytorch Daily Practice - Predicting Surviving Passengers on the Titanic
2022-07-31 06:32:00 【qq_50749521】
训练数据:
Survived是输出标签,other age、性别、Names, etc. are treated as input.Of course there will be missing data,It needs to be cleaned in advance.
The purpose of the test is to input the sample features,Whether the output can survive(0或1)
import torch
import pandas as pd
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
class DiabetesDataset(Dataset):
def __init__(self, filepath):
xy = pd.read_csv(filepath)
self.len = xy.shape[0]
features = ["Pclass", "Sex", "SibSp", "Parch", "Fare"]
self.x_data = torch.from_numpy(np.array(pd.get_dummies(xy[features])))
self.y_data = torch.from_numpy(np.array(xy['Survived']))
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset('Dataset\\titanic\\train.csv')
train_loader = DataLoader(dataset = dataset,
batch_size = 32,
shuffle = True,
num_workers = 0)
batch_size = 32
batch = np.round(dataset.__len__() / batch_size)
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(6, 4)
self.linear2 = torch.nn.Linear(4, 2)
self.linear3 = torch.nn.Linear(2, 1)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.relu(self.linear1(x))
x = self.relu(self.linear2(x))
x = self.sigmoid(self.linear3(x))#注意最后一步不能使用relu,避免无法计算梯度
return x
mymodel = Model()
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(mymodel.parameters(), lr = 0.01)
epoch_list = []
loss_list = []
sum_loss = 0
if __name__ == '__main__':
for epoch in range(500):
for index, data in enumerate(train_loader, 0): #train_loaderWhat is stored is the split and combined mini-batch training samples and the corresponding labels
inputs, labels = data #inputs labels都是张量
inputs = inputs.float()
labels = labels.float()
y_pred = mymodel(inputs)
y_pred = y_pred.squeeze(-1)
loss = criterion(y_pred, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
sum_loss += loss.item()
print('epoch = ', epoch + 1,'index = ', index+1, 'loss = ', loss.item())
epoch_list.append(epoch)
loss_list.append(sum_loss/batch)
print(sum_loss/batch)
sum_loss = 0
test_x = pd.read_csv('Dataset\\titanic\\test.csv')
features = ["Pclass", "Sex", "SibSp", "Parch", "Fare"]
test_x_data = torch.from_numpy(np.array(pd.get_dummies(test_x[features])))
test_x_data = test_x_data.float()
y_test_pred = mymodel(test_x_data)
len_y = y_test_pred.shape[0]
y = []
for i in range(len_y):
if(y_test_pred[i].item()<0.5):
y.append(0)
else:
y.append(1)
for i in range(len(y)):
print(y[i])
Finally put the outputy保存到gender_submission.csv中,提交kaggle即可.
Just started practicing the basics,Improve slowly later…
边栏推荐
- CAS:474922-22-0 Maleimide-PEG-DSPE Phospholipid-Polyethylene Glycol-Maleimide Brief Description
- Getting Started with MySQL: The Case Statement Works Well
- Pytorch每日一练——预测泰坦尼克号船上的生存乘客
- 钉钉H5微应用免登鉴权
- 2021-09-30
- 超参数优化-摘抄
- Data Preprocessing, Feature Engineering, and Feature Learning - Excerpt
- 【解决问题】RuntimeError: The size of tensor a (80) must match the size of tensor b (56) at non-singleton
- DSPE-PEG-Azide DSPE-PED-N3 Phospholipid-Polyethylene Glycol-Azide Lipid PFG
- 词向量——demo
猜你喜欢

Cholesterol-PEG-Amine CLS-PEG-NH2 胆固醇-聚乙二醇-氨基科研用

Tensorflow边用边踩坑

Getting Started with MySQL: The Case Statement Works Well

qt:cannot open C:\Users\XX\AppData\Local\Temp\main.obj.15576.16.jom for write
![[已解决]ssh连接报:Bad owner or permissions on C:\\Users/XXX/.ssh/config](/img/53/8b5a12e7ed551dca52ada5dbb5d6b5.png)
[已解决]ssh连接报:Bad owner or permissions on C:\\Users/XXX/.ssh/config

MW: 3400 4-Arm PEG-DSPE four-arm-polyethylene glycol-phospholipid a saturated 18-carbon phospholipid

RuntimeError: CUDA error: no kernel image is available for execution on the device问题记录

Pytorch常用函数

活体检测CDCN学习笔记

四种常见的POST提交数据方式
随机推荐
机器学习和深度学习概述
深度学习知识点杂谈
用pytorch里的children方法自定义网络
np.fliplr与np.flipud
Jupyter内核正忙、内核挂掉
random.randint函数用法
词向量——demo
Research reagents Cholesterol-PEG-Maleimide, CLS-PEG-MAL, Cholesterol-PEG-Maleimide
2021-09-30
Cholesterol-PEG-Acid CLS-PEG-COOH 胆固醇-聚乙二醇-羧基修饰肽类化合物
Wangeditor rich text editor to upload pictures and solve cross-domain problems
cv2.resize()是反的
拒绝采样小记
mPEG-DSPE 178744-28-0 甲氧基-聚乙二醇-磷脂酰乙醇胺线性PEG磷脂
VS2017 connects to MYSQL
cocos2d-x implements cross-platform directory traversal
DSPE-PEG-Biotin, CAS: 385437-57-0, phospholipid-polyethylene glycol-biotin prolongs circulating half-life
Hyperparameter Optimization - Excerpt
pyspark.ml feature transformation module
The array technique, my love