当前位置:网站首页>Pytorch Daily Practice - Predicting Surviving Passengers on the Titanic
Pytorch Daily Practice - Predicting Surviving Passengers on the Titanic
2022-07-31 06:32:00 【qq_50749521】
训练数据:
Survived是输出标签,other age、性别、Names, etc. are treated as input.Of course there will be missing data,It needs to be cleaned in advance.
The purpose of the test is to input the sample features,Whether the output can survive(0或1)
import torch
import pandas as pd
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
class DiabetesDataset(Dataset):
def __init__(self, filepath):
xy = pd.read_csv(filepath)
self.len = xy.shape[0]
features = ["Pclass", "Sex", "SibSp", "Parch", "Fare"]
self.x_data = torch.from_numpy(np.array(pd.get_dummies(xy[features])))
self.y_data = torch.from_numpy(np.array(xy['Survived']))
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset('Dataset\\titanic\\train.csv')
train_loader = DataLoader(dataset = dataset,
batch_size = 32,
shuffle = True,
num_workers = 0)
batch_size = 32
batch = np.round(dataset.__len__() / batch_size)
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(6, 4)
self.linear2 = torch.nn.Linear(4, 2)
self.linear3 = torch.nn.Linear(2, 1)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.relu(self.linear1(x))
x = self.relu(self.linear2(x))
x = self.sigmoid(self.linear3(x))#注意最后一步不能使用relu,避免无法计算梯度
return x
mymodel = Model()
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(mymodel.parameters(), lr = 0.01)
epoch_list = []
loss_list = []
sum_loss = 0
if __name__ == '__main__':
for epoch in range(500):
for index, data in enumerate(train_loader, 0): #train_loaderWhat is stored is the split and combined mini-batch training samples and the corresponding labels
inputs, labels = data #inputs labels都是张量
inputs = inputs.float()
labels = labels.float()
y_pred = mymodel(inputs)
y_pred = y_pred.squeeze(-1)
loss = criterion(y_pred, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
sum_loss += loss.item()
print('epoch = ', epoch + 1,'index = ', index+1, 'loss = ', loss.item())
epoch_list.append(epoch)
loss_list.append(sum_loss/batch)
print(sum_loss/batch)
sum_loss = 0
test_x = pd.read_csv('Dataset\\titanic\\test.csv')
features = ["Pclass", "Sex", "SibSp", "Parch", "Fare"]
test_x_data = torch.from_numpy(np.array(pd.get_dummies(test_x[features])))
test_x_data = test_x_data.float()
y_test_pred = mymodel(test_x_data)
len_y = y_test_pred.shape[0]
y = []
for i in range(len_y):
if(y_test_pred[i].item()<0.5):
y.append(0)
else:
y.append(1)
for i in range(len(y)):
print(y[i])
Finally put the outputy保存到gender_submission.csv中,提交kaggle即可.
Just started practicing the basics,Improve slowly later…
边栏推荐
- Evaluating Machine Learning Models - Excerpt
- 自然语言处理相关list
- ROS 之订阅多个topic时间同步问题
- The content of the wangeditor editor is transferred to the background server for storage
- DSPE-PEG-COOH CAS: 1403744-37-5 Phospholipid-polyethylene glycol-carboxy lipid PEG conjugate
- Word vector - demo
- Cholesterol-PEG-NHS NHS-PEG-CLS 胆固醇-聚乙二醇-活性酯可修饰小分子材料
- Pytorch实现ResNet
- Attention based ASR(LAS)
- CAS:1403744-37-5 DSPE-PEG-FA 科研实验用磷脂-聚乙二醇-叶酸
猜你喜欢

Pytorch学习笔记09——多分类问题

mPEG-DMPE Methoxy-polyethylene glycol-bismyristyl phosphatidylethanolamine for stealth liposome formation

JS写一段代码,判断一个字符串中出现次数最多的字符串,并统计出现的次数JS

IDEA控制台不能输入信息的解决方法

WeChat applet source code acquisition and decompilation method

Research reagents Cholesterol-PEG-Maleimide, CLS-PEG-MAL, Cholesterol-PEG-Maleimide

pyspark.ml feature transformation module

OpenCV中的图像数据格式CV_8U定义

Wangeditor rich text editor to upload pictures and solve cross-domain problems

日志jar包冲突,及其解决方法
随机推荐
CNN的一点理解
Research reagents Cholesterol-PEG-Maleimide, CLS-PEG-MAL, Cholesterol-PEG-Maleimide
自然语言处理相关list
Cholesterol-PEG-Acid CLS-PEG-COOH 胆固醇-聚乙二醇-羧基修饰肽类化合物
Redis-哈希
用pytorch里的children方法自定义网络
cocos2d-x implements cross-platform directory traversal
Tensorflow相关list
cocos2d-x-3.2 create project method
Pytorch常用函数
The array technique, my love
变分自编码器VAE实现MNIST数据集生成by Pytorch
钉钉企业内部-H5微应用开发
自己设置的私密文件,在哪找
使用 OpenCV 提取图像的 HOG、SURF 及 LBP 特征 (含代码)
Chemical Reagent Phospholipid-Polyethylene Glycol-Amino, DSPE-PEG-amine, CAS: 474922-26-4
Fluorescein-PEG-DSPE 磷脂-聚乙二醇-荧光素荧光磷脂PEG衍生物
活体检测CDCN学习笔记
Solution for MySQL The table is full
活体检测PatchNet学习笔记