当前位置:网站首页>YOLOV5学习笔记(二)——环境安装+运行+训练
YOLOV5学习笔记(二)——环境安装+运行+训练
2022-07-31 02:34:00 【桦树无泪】
目录
一、环境安装测试
1、创建环境
conda create -n yolo python=3.7
conda activate yolo
2、安装pytorch
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
11.3为cuda版本号
3、克隆yolov5
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
//为了避免安装失误采用镜像安装https://pypi.tuna.tsinghua.edu.cn/simple
在github上下载预训练权重文件,将权重文件放到weights文件夹下。
测试
python detect.py --source ./inference/images/ --weights weights/yolov5s.pt --conf 0.4
二、数据集训练
2.1 yaml配置
2.1.1 数据集配置文件
例如VOC.yaml,文件中给出了训练集和验证集的路径,种类数量为20以及名称。
2.1.2 模型配置文件
为训练模型的配置文件
给出了模型训练的种类数量(一般需要更改)以及网络的结构
2.2 VisDrone数据集训练实战
2.2.1下载数据集
Datasets`: [VisDrone] (http://aiskyeye.com/download/object-detection-2/)
每个文件夹下有annotations和image两个文件,并没有label,所以需要对生成label,好在yolov5提供了功能包。
2.2.2 label转yolov5
和train.py同一个目录下,新建文件visdronetoyolo.py并执行,即可自动生成label文件
from utils.general import download, os, Path
def visdrone2yolo(dir):
from PIL import Image
from tqdm import tqdm
def convert_box(size, box):
# Convert VisDrone box to YOLO xywh box
dw = 1. / size[0]
dh = 1. / size[1]
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
for f in pbar:
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
lines = []
with open(f, 'r') as file: # read annotation.txt
for row in [x.split(',') for x in file.read().strip().splitlines()]:
if row[4] == '0': # VisDrone 'ignored regions' class 0
continue
cls = int(row[5]) - 1
box = convert_box(img_size, tuple(map(int, row[:4])))
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
fl.writelines(lines) # write label.txt
dir = Path('/home/cxl/ros_yolov5/src/yolov5/data/VisDrone') # dataset文件夹下Visdrone2019文件夹路径
# Convert
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
2.2.3 训练
python train.py --data data/VisDrone.yaml --cfg models/yolov5s.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 50
- --data data/VisDrone.yaml 数据集配置
- --cfg models/yolov5s.yaml 模型配置
- --weights weights/yolov5s.pt 预训练模型
- --batch-size 16 每次训练取多少个样本训练,取决自己电脑
- --epochs 50 迭代训练多少次
在训练时出现这个问题
RuntimeError: result type Float can't be cast to the desired output type long int
修改【utils】中的【loss.py】里面的两处内容
1.打开你的【utils】文件下的【loss.py】
2.按【Ctrl】+【F】打开搜索功能,输入【for i in range(self.nl)】找到下面的一行内容并替换为:
anchors, shape = self.anchors[i], p[i].shape
3.按【Ctrl】+【F】打开搜索功能,输入【indices.append】找到下面的一行内容并替换为:
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
4.保存刚才的两个替换操作 再次运行
每个Epoch第二行是各参数的损失值,在整个Epoch训练结束后,给出精确度等总体信息,并将这个Epoch的过程文件保存在 ./runs/train/exp 文件夹中
labels.jpg: 边界框中心点的坐标分布
results.csv: 每个Epoch训练后的总体概述
weights: 装的是训练权重
hyp.yaml: 是超参的值
opt.yaml: 是整个训练过程的配置文件
train_batch.jpg是一组batch的训练结果图,我们设置一个batch是16,所以16个图片
2.2.4 可视化
tensorboard --logdir=./runs
=后面是存放exp训练过程文件的路径
三、改成ROS节点
需要注意的是将加载网络模型写到循环外面,这样不用每次加载图片都训练一遍
#!/usr/bin/env python
# YOLOv5 by Ultralytics, GPL-3.0 license
"""
Run inference on images, videos, directories, streams, etc.
Usage - sources:
$ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python path/to/detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s.xml # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (MacOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
"""
import os
import roslib
import rospy
from std_msgs.msg import Header
from std_msgs.msg import String
from sensor_msgs.msg import Image
import numpy as np
import argparse
import os
import sys
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync
@torch.no_grad()
class SubscribeAndPublish:
def __init__(self):
self.all_obstacle_str=''
self.sub1_name="/cam_rgb1/usb_cam/image_raw"
self.sub1= rospy.Subscriber(self.sub1_name, Image,self.callback_rgb)
self.pub1_name="detect_rgb"
self.pub1= rospy.Publisher(self.pub1_name, Image,queue_size=1)
self.model=model
self.device=device
self.img_rgb=[]
def callback_rgb(self,data):
print('callback1')
img_rgb = np.frombuffer(data.data, dtype=np.uint8).reshape(data.height, data.width, -1)
img_rgb=img_rgb[:,:,::-1]
self.img_rgb=img_rgb
cv2.imwrite('./temp/rgb/rgb.jpg',img_rgb)
img_rgb=self.run(**vars(opt))
if len(img_rgb)>0:
print('send img')
self.publish_image(self.pub1,img_rgb,'base_link')
def publish_image(self,pub, data, frame_id='base_link'):
assert len(data.shape) == 3, 'len(data.shape) must be equal to 3.'
header = Header(stamp=rospy.Time.now())
header.frame_id = frame_id
msg = Image()
msg.height = data.shape[0]
msg.width = data.shape[1]
msg.encoding = 'rgb8'
msg.data = np.array(data).tostring()
msg.header = header
msg.step = msg.width * 1 * 3
pub.publish(msg)
def run(self, weights=ROOT / 'yolov5s.pt', # model.pt path(s) #在类里面+self
source=ROOT / './temp/rgb/', # file/dir/URL/glob, 0 for webcam
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
# (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
for path, im, im0s, vid_cap, s in dataset:
t1 = time_sync()
im=torch.from_numpy(im).to(self.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
# Stream results
im0 = annotator.result()
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
return im0
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default=ROOT / '/home/cxl/ros_yolov5/src/yolov5/weights/yolov5x.pt', help='model path(s)')
parser.add_argument('--source', type=str, default=ROOT / './temp/rgb/', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')#概率大于0.25显示出来
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')#检测框的概率
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')#实时查看结果
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')#保存标注结果
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')#保存标注结果
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') #保存置信度
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') #只检测特定类别
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')#增强算法
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')#结果保存在什么位置
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')#保存在原文件夹还是新文件夹
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args() #参数都会放到opt
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(FILE.stem, opt)
return opt
def main(opt,model,device):
rospy.init_node('yolov5', anonymous=True)
#####################
t=SubscribeAndPublish()
#####################
rospy.spin()
if __name__ == "__main__":
opt = parse_opt()
device = ''
weights = '/home/cxl/ros_yolov5/src/yolov5/weights/yolov5x.pt'
dnn=False
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn)
main(opt,model,device)
运行
python ros_detect.py
边栏推荐
- [1154] How to convert string to datetime
- 拒绝加班,程序员开发的效率工具集
- The real CTO is a technical person who understands products
- Android's webview cache related knowledge collection
- Face detection based on opencv
- Inner monologue from a female test engineer...
- First acquaintance with C language -- array
- 图像处理技术的心酸史
- AI software development process in medical imaging field
- What level of software testing does it take to get a 9K job?
猜你喜欢
静态路由+PAT+静态NAT(讲解+实验)
关于 mysql8.0数据库中主键位id,使用replace插入id为0时,实际id插入后自增导致数据重复插入 的解决方法
934. The Shortest Bridge
Problems that need to be solved by the tcp framework
Observer mode (1)
二层广播风暴(产生原因+判断+解决)
Hanyuan Hi-Tech 8-channel HDMI integrated multi-service high-definition video optical transceiver 8-channel HDMI video + 8-channel two-way audio + 8-channel 485 data + 8-channel E1 + 32-channel teleph
There is a problem with the multiplayer-hlap package and the solution cannot be upgraded
公司官网建站笔记(六):域名进行公安备案并将备案号显示在网页底部
完整复制虚拟机原理(云计算)
随机推荐
mysql 索引
mmdetection训练一个模型相关命令
开题报告之论文框架
ShardingJDBC基本介绍
ShardingJDBC usage summary
Fiddler captures packets to simulate weak network environment testing
golang GUI for nuxui — HelloWorld
JS 函数 this上下文 运行时点语法 圆括号 数组 IIFE 定时器 延时器 self.备份上下文 call apply
mmdetection trains a model related command
Calculate S=a+aa+…+aa…a
力扣刷题之爬楼梯(7/30)
关于 mysql8.0数据库中主键位id,使用replace插入id为0时,实际id插入后自增导致数据重复插入 的解决方法
LeetCode 1161 最大层内元素和[BFS 二叉树] HERODING的LeetCode之路
Drools basic introduction, introductory case, basic syntax
Static routing + PAT + static NAT (explanation + experiment)
16. Registration Center-consul
系统需求多变如何设计
AI software development process in medical imaging field
Tower of Hanoi problem
User interaction + formatted output