当前位置:网站首页>Solutions of n-ary linear equations and their criteria
Solutions of n-ary linear equations and their criteria
2022-07-03 11:04:00 【hflag168】
Determinant application -- Clem's law
1. introduce
example 1. Solve a system of linear equations :
{ x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9 − x 1 − 5 x 2 + 4 x 3 = 10 2 x 1 + 7 x 2 + x 3 = 1 \begin{cases} x_1+3x_2+x_3=2 \\ 3x_1+4x_2+2x_3=9 \\ -x_1-5x_2+4x_3=10\\ 2x_1+7x_2+x_3=1 \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=23x1+4x2+2x3=9−x1−5x2+4x3=102x1+7x2+x3=1
Explain :
{ x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9 − x 1 − 5 x 2 + 4 x 3 = 10 2 x 1 + 7 x 2 + x 3 = 1 \begin{cases}x_1+3x_2+x_3=2 \\3x_1+4x_2+2x_3=9 \\-x_1-5x_2+4x_3=10\\2x_1+7x_2+x_3=1\end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=23x1+4x2+2x3=9−x1−5x2+4x3=102x1+7x2+x3=1 * eliminate Go to 2 , 3 , 4 Of x 1 \stackrel{ elimination 2,3,4 Of x_1 }\longrightarrow * eliminate Go to 2,3,4 Of x1 { x 1 + 3 x 2 + x 3 = 2 0 − 5 x 2 − x 3 = 3 0 − 2 x 2 + 5 x 3 = 12 0 + x 2 − x 3 = − 3 \begin{cases}x_1+3x_2+x_3=2 \\0 -5x_2-x_3=3 \\0-2x_2+5x_3=12\\0+x_2-x_3 = -3\end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=20−5x2−x3=30−2x2+5x3=120+x2−x3=−3 * ( 2 , 4 ) \stackrel{(2,4) }\longrightarrow *(2,4) { x 1 + 3 x 2 + x 3 = 2 0 + x 2 − x 3 = − 3 0 − 2 x 2 + 5 x 3 = 12 0 − 5 x 2 − x 3 = 3 \begin{cases}x_1+3x_2+x_3=2 \\0+x_2-x_3=-3 \\0-2x_2+5x_3=12\\0-5x_2-x_3=3\end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=20+x2−x3=−30−2x2+5x3=120−5x2−x3=3 * eliminate Go to 3 , 4 Of x 2 \stackrel{ elimination 3,4 Of x_2 }\longrightarrow * eliminate Go to 3,4 Of x2 { x 1 + 3 x 2 + x 3 = 2 0 + x 2 − x 3 = − 3 0 + 0 + 3 x 3 = 6 0 + 0 − 6 x 3 = − 12 \begin{cases}x_1+3x_2+x_3=2 \\0+x_2-x_3=-3 \\0+0+3x_3=6 \\0+0-6x_3=-12\end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=20+x2−x3=−30+0+3x3=60+0−6x3=−12 * eliminate Go to 4 Of x 3 \stackrel{ elimination 4 Of x_3 }\longrightarrow * eliminate Go to 4 Of x3 { x 1 + 3 x 2 + x 3 = 2 0 + x 2 − x 3 = − 3 0 + 0 + 3 x 3 = 6 0 + 0 + 0 = 0 \begin{cases}x_1+3x_2+x_3=2 \\0+x_2-x_3=-3 \\0+0+3x_3=6 \\0+0+0=0\end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=20+x2−x3=−30+0+3x3=60+0+0=0
analysis : The above process of solving equations , Only coefficients and constant terms are changing , and x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3 It only plays a role of occupying space , Therefore, we can form a matrix with constant terms and coefficients according to their invariable positions , Thus, the solution of the equation is transformed into a simpler matrix operation .
( 1 3 1 2 3 4 2 9 − 1 − 5 4 10 2 7 1 1 ) \begin{pmatrix}1 & 3 & 1 & 2 \\3 & 4 & 2 & 9 \\-1 & -5 & 4 & 10 \\2 & 7 & 1 & 1\end{pmatrix} ⎝⎜⎜⎛13−1234−57124129101⎠⎟⎟⎞ * eliminate Go to 2 , 3 , 4 Of x 1 \stackrel{ elimination 2,3,4 Of x_1 }\longrightarrow * eliminate Go to 2,3,4 Of x1 ( 1 3 1 2 0 − 5 − 1 3 0 − 2 5 12 0 1 − 1 − 3 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & -5 & -1 & 3 \\0 & -2 & 5 & 12 \\0 & 1 & -1 & -3\end{pmatrix} ⎝⎜⎜⎛10003−5−211−15−12312−3⎠⎟⎟⎞ * ( 2 , 4 ) \stackrel{(2,4) }\longrightarrow *(2,4) ( 1 3 1 2 0 1 − 1 − 3 0 − 2 5 12 0 − 5 − 1 3 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & -2 & 5 & 12 \\0 & -5 & -1 & 3\end{pmatrix} ⎝⎜⎜⎛100031−2−51−15−12−3123⎠⎟⎟⎞ * eliminate Go to 3 , 4 Of x 2 \stackrel{ elimination 3,4 Of x_2 }\longrightarrow * eliminate Go to 3,4 Of x2 ( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 − 6 − 12 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & 0 & 3 & 6 \\0 & 0 & -6 & -12\end{pmatrix} ⎝⎜⎜⎛100031001−13−62−36−12⎠⎟⎟⎞ * eliminate Go to 4 Of x 3 \stackrel{ elimination 4 Of x_3 }\longrightarrow * eliminate Go to 4 Of x3 ( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 0 0 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & 0 & 3 & 6 \\0 & 0 & 0 & 0\end{pmatrix} ⎝⎜⎜⎛100031001−1302−360⎠⎟⎟⎞
A matrix consisting of coefficients and constant terms of the system of equations is called Augmented matrix . The augmented matrix in this example is as follows :
( 1 3 1 2 3 4 2 9 − 1 − 5 4 10 2 7 1 1 ) \begin{pmatrix}1 & 3 & 1 & 2 \\3 & 4 & 2 & 9 \\-1 & -5 & 4 & 10 \\2 & 7 & 1 & 1\end{pmatrix} ⎝⎜⎜⎛13−1234−57124129101⎠⎟⎟⎞
After a series of elimination , Finally, we get a matrix that looks like a ladder , It's called Ladder matrix , As shown below :
( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 0 0 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & 0 & 3 & 6 \\0 & 0 & 0 & 0\end{pmatrix} ⎝⎜⎜⎛100031001−1302−360⎠⎟⎟⎞
At this point, the solution of the equations can be obtained . that Ladder matrix It has the following characteristics :
- 0 That's ok ( All elements are 0) Below ;
- Principal component ( First non 0 element ) The column index of strictly increases with the increase of row index .
Carefully implement the process of elimination method , The corresponding matrix performs the following operations :
- Add multiples of one line to another ;
- Two lines swap ;
- Multiply a line by a non-zero number .
The above operation on the augmented matrix of equations is called " Elementary row transformation of matrix "( Explain later ), in other words , The equations obtained by the elementary row transformation of the matrix and the original equations are the same solution equations ! In this way, we can use matrix to solve linear equations :
- Write the augmented matrix of the system of equations ;
- The step matrix is obtained by elementary row transformation of the augmented matrix ;
- According to the step matrix, the solution of the equations is obtained .
Then according to the example 1 The matrix elimination method demonstrated in solves the following equation , So that we can further understand the solution of linear equations .
example 2. Solve equations :
{ x 1 − x 2 + x 3 = 1 x 1 − x 2 − x 3 = 3 2 x 1 − 2 x 2 − x 3 = 3 \begin{cases} x_1-x_2+x_3 = 1 \\ x_1-x_2 -x_3 = 3 \\ 2x_1-2x_2-x_3 = 3 \end{cases} ⎩⎪⎨⎪⎧x1−x2+x3=1x1−x2−x3=32x1−2x2−x3=3
Explain :
( 1 − 1 1 1 1 − 1 − 1 3 2 − 2 − 1 3 ) \begin{pmatrix}1 & -1 & 1 & 1 \\1 & -1 & -1 & 3 \\2 & -2 & -1 & 3 \\\end{pmatrix} ⎝⎛112−1−1−21−1−1133⎠⎞ * eliminate Go to 2 , 3 Of x 1 \stackrel{ elimination 2,3 Of x_1 }\longrightarrow * eliminate Go to 2,3 Of x1 ( 1 − 1 1 1 0 0 − 2 2 0 0 − 3 1 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & -2 & 2 \\0 & 0 & -3 & 1 \\\end{pmatrix} ⎝⎛100−1001−2−3121⎠⎞ * c 2 × ( − 1 2 ) \stackrel{c_2\times(-\frac{1}{2}) }\longrightarrow *c2×(−21) ( 1 − 1 1 1 0 0 1 − 1 0 0 − 3 1 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & -3 & 1 \\\end{pmatrix} ⎝⎛100−10011−31−11⎠⎞ * eliminate Go to 3 Of x 3 \stackrel{ elimination 3 Of x_3 }\longrightarrow * eliminate Go to 3 Of x3 ( 1 − 1 1 1 0 0 1 − 1 0 0 0 − 2 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & 0 & -2\end{pmatrix} ⎝⎛100−1001101−1−2⎠⎞
Write the equations corresponding to the ladder matrix obtained above as follows :
{ x 1 − x 2 + x 3 = 1 0 + 0 + x 3 = − 1 0 + 0 + 0 = − 2 \begin{cases} x_1-x_2+x_3=1 \\ 0 + 0 +x_3 = -1 \\ 0 + 0 + 0 = -2 \end{cases} ⎩⎪⎨⎪⎧x1−x2+x3=10+0+x3=−10+0+0=−2
In the above equations , There is an equation called : 0 = d ( Not 0 ) 0 = d( Not 0) 0=d( Not 0) . Therefore, the equations have no solution .
example 3. Solve equations :
{ x 1 − x 2 + x 3 = 1 x 1 − x 2 − x 3 = 3 2 x 1 − 2 x 2 − x 3 = 5 \begin{cases} x_1-x_2+x_3 = 1 \\ x_1-x_2 -x_3 = 3 \\ 2x_1-2x_2-x_3 = 5 \end{cases} ⎩⎪⎨⎪⎧x1−x2+x3=1x1−x2−x3=32x1−2x2−x3=5
Explain :
( 1 − 1 1 1 1 − 1 − 1 3 2 − 2 − 1 5 ) \begin{pmatrix}1 & -1 & 1 & 1 \\1 & -1 & -1 & 3 \\2 & -2 & -1 & 5 \\\end{pmatrix} ⎝⎛112−1−1−21−1−1135⎠⎞ * eliminate Go to 2 , 3 Of x 1 \stackrel{ elimination 2,3 Of x_1 }\longrightarrow * eliminate Go to 2,3 Of x1 ( 1 − 1 1 1 0 0 − 2 2 0 0 − 3 3 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & -2 & 2 \\0 & 0 & -3 & 3 \\\end{pmatrix} ⎝⎛100−1001−2−3123⎠⎞ * c 2 × ( − 1 2 ) \stackrel{c_2\times(-\frac{1}{2}) }\longrightarrow *c2×(−21) ( 1 − 1 1 1 0 0 1 − 1 0 0 − 3 3 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & -3 & 3 \\\end{pmatrix} ⎝⎛100−10011−31−13⎠⎞ * eliminate Go to 3 Of x 3 \stackrel{ elimination 3 Of x_3 }\longrightarrow * eliminate Go to 3 Of x3 ( 1 − 1 1 1 0 0 1 − 1 0 0 0 0 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & 0 & 0\end{pmatrix} ⎝⎛100−1001101−10⎠⎞
Write the equations corresponding to the ladder matrix obtained above as follows :
{ x 1 − x 2 + x 3 = 1 0 + 0 + x 3 = − 1 0 + 0 + 0 = 0 \begin{cases} x_1-x_2+x_3=1 \\ 0 + 0 +x_3 = -1 \\ 0 + 0 + 0 = 0 \end{cases} ⎩⎪⎨⎪⎧x1−x2+x3=10+0+x3=−10+0+0=0
It can be obtained that the stepped equations have infinite solutions , Thus, the original equations also have infinite solutions !
2. Summative guess
The shape is as follows n A system of elementary linear equations :
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n ( 1 ) \begin{cases} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b1 \\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n = b2 \\ ... \\ a_{n1}x_1+a_{n2}x_2 + ...+ a_{nn}x_n = b_n \end{cases} \quad (1) ⎩⎪⎪⎪⎨⎪⎪⎪⎧a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2...an1x1+an2x2+...+annxn=bn(1)
Equations (1) There are only three cases of solutions : unsolvable , There is a unique solution , There are infinite solutions .
By putting the equations (1) Of Augmented matrix Transformed into Stepped matrix . If the corresponding ladder equations appear "0=d(d It's nonzero )", Then the original equations unsolvable ; Otherwise, the original equations Have solution .
When there is a solution , If the number of non-zero rows of a stepped matrix r=n(n Is the number of unknowns ), Then the original equations have Unique solution ; if r<n, Then the original equations have Infinite solutions .
The above is about n The solutions of linear equations and their criteria need to be further proved before they can be confirmed , But first of all, it's right to tell you .
边栏推荐
- Communication software development and Application
- Large scale e-commerce project - environment construction
- Qt:qss custom qradiobutton instance
- File upload and download test point
- Qt:qss custom qspinbox instance
- 使用ML.NET+ONNX预训练模型整活B站经典《华强买瓜》
- 独家分析 | 关于简历和面试的真 相
- Exclusive analysis | truth about resume and interview
- 你真的需要自动化测试吗?
- T5 attempt
猜你喜欢

MAUI Developer Day in GCR

软件测试必学基本理论知识——APP测试

现在零基础转行软件测试还OK吗?

那些一門心思研究自動化測試的人,後來怎樣了?

Programming examples of stm32f1 and stm32subeide -tm1637 drives 4-bit 7-segment nixie tubes

做软件测试三年,薪资不到20K,今天,我提出了辞职…

那些一门心思研究自动化测试的人,后来怎样了?

8年测试工程师总结出来的《测试核心价值》与《0基础转行软件测试超全学习指南》

Communication software development and Application

Is it OK to test the zero basis software?
随机推荐
做软件测试三年,薪资不到20K,今天,我提出了辞职…
ConstraintLayout跟RelativeLayout嵌套出现的莫名奇妙的问题
DAY 7 小练习
2022 pinduogai 100000 sales tutorial
在职美团测试工程师的这八年,我是如何成长的,愿技术人看完都有收获
Exclusive analysis | truth about resume and interview
【蓝桥杯选拔赛真题44】Scratch消灭骷髅军团 少儿编程scratch蓝桥杯选拔赛真题讲解
“测试人”,有哪些厉害之处?
QT: QSS custom qtreeview instance
Promoted, colleagues become subordinates and don't cooperate with work
UI自动化测试如何走出困境?价值又如何体现?
QT:QSS自定义 QTabWidget 和 QTabBar实例
Software testing (test case) writing: vulgar, native and skillful
QT: QSS custom qtabwidget and qtabbar instances
My understanding of testing (summarized by senior testers)
Error installing the specified version of pilot
QT: QSS custom qtableview instance
QT:QSS自定义QLineEdit实例
QT:QSS自定义QListView实例
How does MySQL find the latest data row that meets the conditions?