当前位置:网站首页>Solutions of n-ary linear equations and their criteria
Solutions of n-ary linear equations and their criteria
2022-07-03 11:04:00 【hflag168】
Determinant application -- Clem's law
1. introduce
example 1. Solve a system of linear equations :
{ x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9 − x 1 − 5 x 2 + 4 x 3 = 10 2 x 1 + 7 x 2 + x 3 = 1 \begin{cases} x_1+3x_2+x_3=2 \\ 3x_1+4x_2+2x_3=9 \\ -x_1-5x_2+4x_3=10\\ 2x_1+7x_2+x_3=1 \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=23x1+4x2+2x3=9−x1−5x2+4x3=102x1+7x2+x3=1
Explain :
{ x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9 − x 1 − 5 x 2 + 4 x 3 = 10 2 x 1 + 7 x 2 + x 3 = 1 \begin{cases}x_1+3x_2+x_3=2 \\3x_1+4x_2+2x_3=9 \\-x_1-5x_2+4x_3=10\\2x_1+7x_2+x_3=1\end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=23x1+4x2+2x3=9−x1−5x2+4x3=102x1+7x2+x3=1 * eliminate Go to 2 , 3 , 4 Of x 1 \stackrel{ elimination 2,3,4 Of x_1 }\longrightarrow * eliminate Go to 2,3,4 Of x1 { x 1 + 3 x 2 + x 3 = 2 0 − 5 x 2 − x 3 = 3 0 − 2 x 2 + 5 x 3 = 12 0 + x 2 − x 3 = − 3 \begin{cases}x_1+3x_2+x_3=2 \\0 -5x_2-x_3=3 \\0-2x_2+5x_3=12\\0+x_2-x_3 = -3\end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=20−5x2−x3=30−2x2+5x3=120+x2−x3=−3 * ( 2 , 4 ) \stackrel{(2,4) }\longrightarrow *(2,4) { x 1 + 3 x 2 + x 3 = 2 0 + x 2 − x 3 = − 3 0 − 2 x 2 + 5 x 3 = 12 0 − 5 x 2 − x 3 = 3 \begin{cases}x_1+3x_2+x_3=2 \\0+x_2-x_3=-3 \\0-2x_2+5x_3=12\\0-5x_2-x_3=3\end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=20+x2−x3=−30−2x2+5x3=120−5x2−x3=3 * eliminate Go to 3 , 4 Of x 2 \stackrel{ elimination 3,4 Of x_2 }\longrightarrow * eliminate Go to 3,4 Of x2 { x 1 + 3 x 2 + x 3 = 2 0 + x 2 − x 3 = − 3 0 + 0 + 3 x 3 = 6 0 + 0 − 6 x 3 = − 12 \begin{cases}x_1+3x_2+x_3=2 \\0+x_2-x_3=-3 \\0+0+3x_3=6 \\0+0-6x_3=-12\end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=20+x2−x3=−30+0+3x3=60+0−6x3=−12 * eliminate Go to 4 Of x 3 \stackrel{ elimination 4 Of x_3 }\longrightarrow * eliminate Go to 4 Of x3 { x 1 + 3 x 2 + x 3 = 2 0 + x 2 − x 3 = − 3 0 + 0 + 3 x 3 = 6 0 + 0 + 0 = 0 \begin{cases}x_1+3x_2+x_3=2 \\0+x_2-x_3=-3 \\0+0+3x_3=6 \\0+0+0=0\end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+3x2+x3=20+x2−x3=−30+0+3x3=60+0+0=0
analysis : The above process of solving equations , Only coefficients and constant terms are changing , and x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3 It only plays a role of occupying space , Therefore, we can form a matrix with constant terms and coefficients according to their invariable positions , Thus, the solution of the equation is transformed into a simpler matrix operation .
( 1 3 1 2 3 4 2 9 − 1 − 5 4 10 2 7 1 1 ) \begin{pmatrix}1 & 3 & 1 & 2 \\3 & 4 & 2 & 9 \\-1 & -5 & 4 & 10 \\2 & 7 & 1 & 1\end{pmatrix} ⎝⎜⎜⎛13−1234−57124129101⎠⎟⎟⎞ * eliminate Go to 2 , 3 , 4 Of x 1 \stackrel{ elimination 2,3,4 Of x_1 }\longrightarrow * eliminate Go to 2,3,4 Of x1 ( 1 3 1 2 0 − 5 − 1 3 0 − 2 5 12 0 1 − 1 − 3 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & -5 & -1 & 3 \\0 & -2 & 5 & 12 \\0 & 1 & -1 & -3\end{pmatrix} ⎝⎜⎜⎛10003−5−211−15−12312−3⎠⎟⎟⎞ * ( 2 , 4 ) \stackrel{(2,4) }\longrightarrow *(2,4) ( 1 3 1 2 0 1 − 1 − 3 0 − 2 5 12 0 − 5 − 1 3 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & -2 & 5 & 12 \\0 & -5 & -1 & 3\end{pmatrix} ⎝⎜⎜⎛100031−2−51−15−12−3123⎠⎟⎟⎞ * eliminate Go to 3 , 4 Of x 2 \stackrel{ elimination 3,4 Of x_2 }\longrightarrow * eliminate Go to 3,4 Of x2 ( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 − 6 − 12 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & 0 & 3 & 6 \\0 & 0 & -6 & -12\end{pmatrix} ⎝⎜⎜⎛100031001−13−62−36−12⎠⎟⎟⎞ * eliminate Go to 4 Of x 3 \stackrel{ elimination 4 Of x_3 }\longrightarrow * eliminate Go to 4 Of x3 ( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 0 0 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & 0 & 3 & 6 \\0 & 0 & 0 & 0\end{pmatrix} ⎝⎜⎜⎛100031001−1302−360⎠⎟⎟⎞
A matrix consisting of coefficients and constant terms of the system of equations is called Augmented matrix . The augmented matrix in this example is as follows :
( 1 3 1 2 3 4 2 9 − 1 − 5 4 10 2 7 1 1 ) \begin{pmatrix}1 & 3 & 1 & 2 \\3 & 4 & 2 & 9 \\-1 & -5 & 4 & 10 \\2 & 7 & 1 & 1\end{pmatrix} ⎝⎜⎜⎛13−1234−57124129101⎠⎟⎟⎞
After a series of elimination , Finally, we get a matrix that looks like a ladder , It's called Ladder matrix , As shown below :
( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 0 0 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & 0 & 3 & 6 \\0 & 0 & 0 & 0\end{pmatrix} ⎝⎜⎜⎛100031001−1302−360⎠⎟⎟⎞
At this point, the solution of the equations can be obtained . that Ladder matrix It has the following characteristics :
- 0 That's ok ( All elements are 0) Below ;
- Principal component ( First non 0 element ) The column index of strictly increases with the increase of row index .
Carefully implement the process of elimination method , The corresponding matrix performs the following operations :
- Add multiples of one line to another ;
- Two lines swap ;
- Multiply a line by a non-zero number .
The above operation on the augmented matrix of equations is called " Elementary row transformation of matrix "( Explain later ), in other words , The equations obtained by the elementary row transformation of the matrix and the original equations are the same solution equations ! In this way, we can use matrix to solve linear equations :
- Write the augmented matrix of the system of equations ;
- The step matrix is obtained by elementary row transformation of the augmented matrix ;
- According to the step matrix, the solution of the equations is obtained .
Then according to the example 1 The matrix elimination method demonstrated in solves the following equation , So that we can further understand the solution of linear equations .
example 2. Solve equations :
{ x 1 − x 2 + x 3 = 1 x 1 − x 2 − x 3 = 3 2 x 1 − 2 x 2 − x 3 = 3 \begin{cases} x_1-x_2+x_3 = 1 \\ x_1-x_2 -x_3 = 3 \\ 2x_1-2x_2-x_3 = 3 \end{cases} ⎩⎪⎨⎪⎧x1−x2+x3=1x1−x2−x3=32x1−2x2−x3=3
Explain :
( 1 − 1 1 1 1 − 1 − 1 3 2 − 2 − 1 3 ) \begin{pmatrix}1 & -1 & 1 & 1 \\1 & -1 & -1 & 3 \\2 & -2 & -1 & 3 \\\end{pmatrix} ⎝⎛112−1−1−21−1−1133⎠⎞ * eliminate Go to 2 , 3 Of x 1 \stackrel{ elimination 2,3 Of x_1 }\longrightarrow * eliminate Go to 2,3 Of x1 ( 1 − 1 1 1 0 0 − 2 2 0 0 − 3 1 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & -2 & 2 \\0 & 0 & -3 & 1 \\\end{pmatrix} ⎝⎛100−1001−2−3121⎠⎞ * c 2 × ( − 1 2 ) \stackrel{c_2\times(-\frac{1}{2}) }\longrightarrow *c2×(−21) ( 1 − 1 1 1 0 0 1 − 1 0 0 − 3 1 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & -3 & 1 \\\end{pmatrix} ⎝⎛100−10011−31−11⎠⎞ * eliminate Go to 3 Of x 3 \stackrel{ elimination 3 Of x_3 }\longrightarrow * eliminate Go to 3 Of x3 ( 1 − 1 1 1 0 0 1 − 1 0 0 0 − 2 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & 0 & -2\end{pmatrix} ⎝⎛100−1001101−1−2⎠⎞
Write the equations corresponding to the ladder matrix obtained above as follows :
{ x 1 − x 2 + x 3 = 1 0 + 0 + x 3 = − 1 0 + 0 + 0 = − 2 \begin{cases} x_1-x_2+x_3=1 \\ 0 + 0 +x_3 = -1 \\ 0 + 0 + 0 = -2 \end{cases} ⎩⎪⎨⎪⎧x1−x2+x3=10+0+x3=−10+0+0=−2
In the above equations , There is an equation called : 0 = d ( Not 0 ) 0 = d( Not 0) 0=d( Not 0) . Therefore, the equations have no solution .
example 3. Solve equations :
{ x 1 − x 2 + x 3 = 1 x 1 − x 2 − x 3 = 3 2 x 1 − 2 x 2 − x 3 = 5 \begin{cases} x_1-x_2+x_3 = 1 \\ x_1-x_2 -x_3 = 3 \\ 2x_1-2x_2-x_3 = 5 \end{cases} ⎩⎪⎨⎪⎧x1−x2+x3=1x1−x2−x3=32x1−2x2−x3=5
Explain :
( 1 − 1 1 1 1 − 1 − 1 3 2 − 2 − 1 5 ) \begin{pmatrix}1 & -1 & 1 & 1 \\1 & -1 & -1 & 3 \\2 & -2 & -1 & 5 \\\end{pmatrix} ⎝⎛112−1−1−21−1−1135⎠⎞ * eliminate Go to 2 , 3 Of x 1 \stackrel{ elimination 2,3 Of x_1 }\longrightarrow * eliminate Go to 2,3 Of x1 ( 1 − 1 1 1 0 0 − 2 2 0 0 − 3 3 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & -2 & 2 \\0 & 0 & -3 & 3 \\\end{pmatrix} ⎝⎛100−1001−2−3123⎠⎞ * c 2 × ( − 1 2 ) \stackrel{c_2\times(-\frac{1}{2}) }\longrightarrow *c2×(−21) ( 1 − 1 1 1 0 0 1 − 1 0 0 − 3 3 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & -3 & 3 \\\end{pmatrix} ⎝⎛100−10011−31−13⎠⎞ * eliminate Go to 3 Of x 3 \stackrel{ elimination 3 Of x_3 }\longrightarrow * eliminate Go to 3 Of x3 ( 1 − 1 1 1 0 0 1 − 1 0 0 0 0 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & 0 & 0\end{pmatrix} ⎝⎛100−1001101−10⎠⎞
Write the equations corresponding to the ladder matrix obtained above as follows :
{ x 1 − x 2 + x 3 = 1 0 + 0 + x 3 = − 1 0 + 0 + 0 = 0 \begin{cases} x_1-x_2+x_3=1 \\ 0 + 0 +x_3 = -1 \\ 0 + 0 + 0 = 0 \end{cases} ⎩⎪⎨⎪⎧x1−x2+x3=10+0+x3=−10+0+0=0
It can be obtained that the stepped equations have infinite solutions , Thus, the original equations also have infinite solutions !
2. Summative guess
The shape is as follows n
A system of elementary linear equations :
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n ( 1 ) \begin{cases} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b1 \\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n = b2 \\ ... \\ a_{n1}x_1+a_{n2}x_2 + ...+ a_{nn}x_n = b_n \end{cases} \quad (1) ⎩⎪⎪⎪⎨⎪⎪⎪⎧a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2...an1x1+an2x2+...+annxn=bn(1)
Equations (1) There are only three cases of solutions : unsolvable , There is a unique solution , There are infinite solutions .
By putting the equations (1) Of Augmented matrix Transformed into Stepped matrix . If the corresponding ladder equations appear "0=d(d It's nonzero )", Then the original equations unsolvable ; Otherwise, the original equations Have solution .
When there is a solution , If the number of non-zero rows of a stepped matrix r=n
(n Is the number of unknowns ), Then the original equations have Unique solution ; if r<n
, Then the original equations have Infinite solutions .
The above is about n The solutions of linear equations and their criteria need to be further proved before they can be confirmed , But first of all, it's right to tell you .
边栏推荐
- MySQL checks for automatic updates at 0:00 every day
- 17K薪资要什么水平?来看看95后测试工程师的面试全过程…
- IIS修改配置信息后不生效
- 如何在游戏中制作一个血条
- .Net Core-做一个微信公众号的排队系统
- Solve the problem that pycharm Chinese input method does not follow
- Flink-- custom function
- QT: QSS custom qtableview instance
- C language project: student achievement system
- If you always feel that you need to persist in learning English
猜你喜欢
How does MySQL find the latest data row that meets the conditions?
Clion debug
MySQL checks for automatic updates at 0:00 every day
MAUI Developer Day in GCR
QT: QSS custom qtreeview instance
QT:QSS自定义QTableView实例
What is the salary level of 17k? Let's take a look at the whole interview process of post-95 Test Engineers
The highest monthly salary of 18K has a good "mentality and choice", and success is poor "seriousness and persistence"~
正常一英寸25.4厘米,在影像领域是16厘米
T5 attempt
随机推荐
Qt:qss custom qmenu instance
Cause: org. apache. ibatis. builder. Builderexception: error parsing SQL mapper configuration problem analysis
Multiple IO transfer - preamble
The highest monthly salary of 18K has a good "mentality and choice", and success is poor "seriousness and persistence"~
那些一門心思研究自動化測試的人,後來怎樣了?
Software testing e-commerce projects that can be written into your resume, don't you come in and get it?
有些能力,是工作中学不来的,看看这篇超过90%同行
What experience is there only one test in the company? Listen to what they say
. Net core - a queuing system for wechat official account
Some abilities can't be learned from work. Look at this article, more than 90% of peers
QT:QSS自定义QTableView实例
Wechat applet training notes 1
硬 货 | 一改测试步骤代码就全写?为什么不试试用 Yaml实现数据驱动?
UI interface design related knowledge (I)
DAY 7 小练习
Qt:qss custom qlineedit instance
如何监测服务器主机的进出流量?
Software testing (test case) writing: vulgar, native and skillful
【蓝桥杯选拔赛真题44】Scratch消灭骷髅军团 少儿编程scratch蓝桥杯选拔赛真题讲解
Differences among norm, normalize and normalized in eigen