当前位置:网站首页>[radar] radar signal online sorting based on kernel clustering with matlab code
[radar] radar signal online sorting based on kernel clustering with matlab code
2022-07-28 23:04:00 【matlab_ dingdang】
1 Content introduction
Radar signal sorting is a necessary function of modern radar reconnaissance equipment ‚ It uses the measured radar signal parameters ‚ Separate randomly overlapping radar signals into independent radar signal columns ‚ Lay a solid foundation for the final radar signal recognition . In Modern Warfare ‚ The signal environment of radar reconnaissance receiver is becoming more and more dense ‚ More and more complex . The traditional signal sorting is mainly based on the idea of Statistics ‚ Through the pulse repetition period of the pulse sequence (PRI) analysis ‚ basis PRI Modulation mode of ‚ Sort out the corresponding radar signals . But this method has a large amount of computation 、 Slow speed 、 The accuracy and signal parameter utilization are not high . This paper will use kernel method to improve fuzzy clustering ‚ Applied to radar signal sorting ‚ And the simulation test is carried out stay Before kernel fuzzy clustering ‚ First, a large number of radar sequence signals are diluted . The reconnaissance opportunity receives signals from radiation sources in all directions at the same time ‚ Because the space position of radar is not It will mutate ‚ So the direction of arrival of the signal (DOA) Parameters will not jump ‚DOA From the physical position, we can distinguish the radiation sources in different directions . actually ‚ The signal to be sorted is the signal mixed by multiple radiation sources from the same direction . therefore ‚ accurate DOA It is a powerful sorting parameter ‚ With accurate DOA As a dense signal flow, pre sorting is an important way to solve the reliable sorting of various special radar signals . There will be a lot of 、 Dense sequence signal data press DOA Diluted into several data sets ‚ In pulse width modulation (PDW) Medium repetition rate (RF)‚ Pulse width (PW) Relatively fixed ‚ Pulse amplitude (PA) Is an uncertain parameter ‚ It cannot be used as the basis for sorting and judgment .
2 Simulation code
<span style="color:#333333"><span style="background-color:rgba(0, 0, 0, 0.03)"><code><span style="color:#dd1144">%% use RBF nucleus ,K(X1,X2)=exp(-a*||X1-X2||)</span></code><code>%% Initialization data </code><code>clc</code><code>close all</code><code></code><code>a=<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">05</span>;% Kernel function parameters </code><code>e=<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">05</span>;% Look for the similarity measurement threshold of the superior class </code><code>d=<span style="color:#0e9ce5">5</span>;% Share data to determine the number of vectors of merged classes </code><code>s=<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">1</span>;% Initial step </code><code>T=<span style="color:#0e9ce5">100</span>;% Eliminate noise sampling interval </code><code>n=<span style="color:#0e9ce5">3</span>;% Eliminate noise threshold </code><code>a<span style="color:#0e9ce5">0</span>=<span style="color:#0e9ce5">1</span>;% Initial parameter of penalty item </code><code>num=<span style="color:#0e9ce5">1000</span>;%</code><code>q=<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">01</span>;% Variance parameter </code><code></code><code><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span>% Simulation data is not sorted <span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span>%</code><code>signal1=signal_create(num,q);</code><code>figure(<span style="color:#0e9ce5">1</span>);</code><code>title(<span style="color:#dd1144">' The data distribution '</span>);</code><code>plot(signal1(<span style="color:#dd1144">:</span>,<span style="color:#0e9ce5">1</span>),signal1(<span style="color:#dd1144">:</span>,<span style="color:#0e9ce5">2</span>),<span style="color:#dd1144">'.b'</span>);</code><code>hold on;</code><code></code><code><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span>% Create a new class <span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%</span></code><code>Cdata=cell(1,1000);% Store each type </code><code>Adata=cell(<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1000</span>);% Store the weight of class vector </code><code>Pdata=zeros(<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1000</span>);% Offset </code><code>N=zeros(<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1000</span>);% The total number of various vectors </code><code>share_kind=zeros(<span style="color:#0e9ce5">1000</span>,<span style="color:#0e9ce5">2</span>);% Shared data </code><code>share_num=<span style="color:#0e9ce5">0</span>;</code><code></code><code>m=<span style="color:#0e9ce5">1</span>;% Number of classes </code><code>Cdata{<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1</span>}(<span style="color:#0e9ce5">1</span>,<span style="color:#dd1144">:</span>)=signal1(<span style="color:#0e9ce5">1</span>,<span style="color:#dd1144">:</span>);% The first <span style="color:#0e9ce5">1</span> The first vector of the class </code><code>Adata{<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1</span>}(<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1</span>)=s;</code><code>Pdata(<span style="color:#0e9ce5">1</span>)=s;</code><code>N(<span style="color:#0e9ce5">1</span>)=<span style="color:#0e9ce5">1</span>;</code><code>num_data=<span style="color:#0e9ce5">1</span>;% The number of signal vectors has been determined </code><code>f=<span style="color:#0e9ce5">0</span>;</code><code></code><code><span style="color:#ca7d37">for</span> j=<span style="color:#0e9ce5">1</span><span style="color:#dd1144">:</span><span style="color:#0e9ce5">2999</span></code><code> num_data=num_data+<span style="color:#0e9ce5">1</span>; </code><code><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%% Eliminate noise %</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span></code><code>% <span style="color:#ca7d37">if</span> j mod <span style="color:#0e9ce5">100</span>==<span style="color:#0e9ce5">0</span></code><code>% </code><code>% <span style="color:#ca7d37">end</span></code><code>,Pdata,m ] = delete_kind( Cdata,Adata,Pdata,N,m,m_out(i));</code><code> <span style="color:#ca7d37">end</span></code><code><span style="color:#ca7d37">end</span></code><code></code><code><span style="color:#ca7d37">end</span></code><code></code><code></code><code></code><code></code><code></code><code></code></span></span>
3 Running results
4 reference
[1] Yu Xinxing , Wang Yong . Radar signal sorting method based on on-line kernel clustering [J]. Computer engineering , 2012, 38(3):270-272.
[2] Ksssssss , Luo Luqin , Zhao Guixi . Radar signal sorting algorithm based on kernel fuzzy clustering [J]. Ship electronic countermeasure , 2009, 32(4):4.
[3] Wang Yili , Yang Yuming . A radar signal sorting algorithm based on improved spectral clustering .
About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .
Some theories cite network literature , If there is infringement, contact the blogger to delete .
边栏推荐
- Stm32f4 serial port burning [flymcu]
- Annaconda installs pytoch and switches environments
- Configuration and official document of Freia library [tips]
- xshell7,xftp7个人免费版官方下载,无需破解,免激活,下载即可使用
- MySQL foundation - data query
- Target detection notes - overview and common data sets
- 芯华章宣布完成超2亿A轮融资,全面布局EDA2.0研发
- 弹框遮罩层「建议收藏」
- 无代码开发平台管理后台入门教程
- Nacos配置热更新的4种方式、读取项目配置文件的多种方式,@value,@RefreshScope,@NacosConfigurationProperties
猜你喜欢
Yolov5 improvement 15: network lightweight method deep separable convolution
安全狗入选《云安全全景图2.0》多个细项
A new MPLS note from quigo, which must be read when taking the IE exam ---- quigo of Shangwen network
sql优化常用的几种方法
[3D target detection] 3dssd (II)
Padim [anomaly detection: embedded based]
无代码开发平台通讯录导出入门教程
frontiers出版社投稿记录(附状态变化)
Target detection notes -yolo
npm run dev,运行项目后自动打开浏览器
随机推荐
无代码开发平台通讯录导出入门教程
无代码开发平台管理后台入门教程
OSV_ q AttributeError: ‘numpy. ndarray‘ object has no attribute ‘clone‘
轮子六:QSerialPort 串口数据 收发
Invest 50billion yuan! SMIC capital was officially registered!
从 IPv4 向 IPv6 的迁移
Sqlilabs-2 (breakthrough record)
OSV-q The size of tensor a (3) must match the size of tensor b (320) at non-singleton dimension 3
CS flow [abnormal detection: normalizing flow]
Annaconda installs pytoch and switches environments
OSV_ q Expected all tensors to be on the same device, but found at least two devices, cuda:0
(important) first knowledge of C language -- function
Target detection notes -yolo
Seagate released a new risc-v architecture processor: the performance of mechanical hard disk soared 3 times
Thesis reading (0) - alexnet of classification
Leetcode exercise 3 - palindromes
cannot resize variables that require grad
LeetCode练习3——回文数
Ocr-gan [anomaly detection: Reconstruction Based]
简单的es高亮实战