[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

Overview

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

Project Page | Paper | Supplemental material #1 | Supplemental material #2 | Presentation Video

Hyunho Ha ([email protected]), Joo Ho Lee ([email protected]), Andreas Meuleman ([email protected]) and Min H. Kim ([email protected])

Institute: KAIST Visual Computing Laboratory

If you use our code for your academic work, please cite our paper:

@InProceedings{Ha_2021_CVPR,
	author = {Hyunho Ha and Joo Ho Lee and Andreas Meuleman and Min H. Kim},
	title = {NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning},
	booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	month = {June},
	year = {2021}
}

Installation

Our implementation is based on the voxel hashing (https://github.com/niessner/VoxelHashing) and TextureFusion repository (https://github.com/KAIST-VCLAB/texturefusion).

To run our code, first obtain the entire source codes from voxel hashing repository, including the Visual Studio project file. Then, in VoxelHashing/DepthSensingCUDA/, replace the folders Source/ and Shaders/ as well as the configuration files zParameters*.txt by the content of our repository. Therefore, our source code inherits the dependency of the Voxel Hashing project as follows.

Our work requires:

Our code has been developed with Microsoft Visual Studio 2013 (VC++ 12) and Windows 10 (10.0.19041, build 19041) on a machine equipped with Intel i9-10920X (RAM: 64GB), NVIDIA TITAN RTX (RAM: 24GB). The main function is in normalFusion_main.cpp.

Data

We provide the "fountain" dataset (originally created by Zhou and Koltun) compatible with our implementation (link: http://vclab.kaist.ac.kr/cvpr2020p1/fountain_all.zip).

Usage

Our program reads parameters from three files and you can change the program setting by changing them.

  • zParametersDefault.txt

  • zParametersTrackingDefault.txt

  • zParametersWarpingDefault.txt

  • zParametersEnhancementDefault.txt

You can run our program with the provided fountain dataset.

Please set s_sensorIdx as 9 and s_binaryDumpSensorFile[0] as the fountain folder in zParametersDefault.txt.

Our program produces mesh with two textures (diffuse albedo and normal). If you want to further enhance mesh using normal texture, please refer to the paper: "Efficiently Combining Positions and Normals for Precise 3D Geometry", Nehab et al., ACM TOG, 2005.

License

Hyunho Ha, Joo Ho Lee, Andreas Meuleman, and Min H. Kim have developed this software and related documentation (the "Software"); confidential use in source form of the Software, without modification, is permitted provided that the following conditions are met:

Neither the name of the copyright holder nor the names of any contributors may be used to endorse or promote products derived from the Software without specific prior written permission.

The use of the software is for Non-Commercial Purposes only. As used in this Agreement, "Non-Commercial Purpose" means for the purpose of education or research in a non-commercial organisation only. "Non-Commercial Purpose" excludes, without limitation, any use of the Software for, as part of, or in any way in connection with a product (including software) or service which is sold, offered for sale, licensed, leased, published, loaned or rented. If you require a license for a use excluded by this agreement, please email [[email protected]].

Warranty: KAIST-VCLAB MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. KAIST-VCLAB SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

Note that Our implementation inherits the original license of "Voxel Hashing" codes (CC BY-NC-SA 3.0).

Please refer to license.txt for more details.

Contact

If you have any questions, please feel free to contact us.

Hyunho Ha ([email protected])

Joo Ho Lee ([email protected])

Andreas Meuleman ([email protected])

Min H. Kim ([email protected])

Owner
KAIST VCLAB
KAIST Visual Computing Laboratory
KAIST VCLAB
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023