Count the MACs / FLOPs of your PyTorch model.

Overview

THOP: PyTorch-OpCounter

How to install

pip install thop (now continously intergrated on Github actions)

OR

pip install --upgrade git+https://github.com/Lyken17/pytorch-OpCounter.git

How to use

  • Basic usage

    from torchvision.models import resnet50
    from thop import profile
    model = resnet50()
    input = torch.randn(1, 3, 224, 224)
    macs, params = profile(model, inputs=(input, ))
  • Define the rule for 3rd party module.

    class YourModule(nn.Module):
        # your definition
    def count_your_model(model, x, y):
        # your rule here
    
    input = torch.randn(1, 3, 224, 224)
    macs, params = profile(model, inputs=(input, ), 
                            custom_ops={YourModule: count_your_model})
  • Improve the output readability

    Call thop.clever_format to give a better format of the output.

    from thop import clever_format
    macs, params = clever_format([macs, params], "%.3f")

Results of Recent Models

The implementation are adapted from torchvision. Following results can be obtained using benchmark/evaluate_famous_models.py.

Model Params(M) MACs(G)
alexnet 61.10 0.77
vgg11 132.86 7.74
vgg11_bn 132.87 7.77
vgg13 133.05 11.44
vgg13_bn 133.05 11.49
vgg16 138.36 15.61
vgg16_bn 138.37 15.66
vgg19 143.67 19.77
vgg19_bn 143.68 19.83
resnet18 11.69 1.82
resnet34 21.80 3.68
resnet50 25.56 4.14
resnet101 44.55 7.87
resnet152 60.19 11.61
wide_resnet101_2 126.89 22.84
wide_resnet50_2 68.88 11.46
Model Params(M) MACs(G)
resnext50_32x4d 25.03 4.29
resnext101_32x8d 88.79 16.54
densenet121 7.98 2.90
densenet161 28.68 7.85
densenet169 14.15 3.44
densenet201 20.01 4.39
squeezenet1_0 1.25 0.82
squeezenet1_1 1.24 0.35
mnasnet0_5 2.22 0.14
mnasnet0_75 3.17 0.24
mnasnet1_0 4.38 0.34
mnasnet1_3 6.28 0.53
mobilenet_v2 3.50 0.33
shufflenet_v2_x0_5 1.37 0.05
shufflenet_v2_x1_0 2.28 0.15
shufflenet_v2_x1_5 3.50 0.31
shufflenet_v2_x2_0 7.39 0.60
inception_v3 27.16 5.75
Owner
Ligeng Zhu
Ph.D. student in [email protected], alumni at SFU and ZJU.
Ligeng Zhu
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022