Official Pytorch implementation of Meta Internal Learning

Overview

Meta Internal Learning

This repository is the official implementation of Meta Internal Learning by Raphael Bensadoun, Shir Gur, Tomer Galanti, Lior Wolf.

Project | arXiv | Code

Requirements

To install requirements:

pip install -r requirements.txt

Training on a dataset

  1. Create a folder X containing the images. (see structure in data folder)
  2. Determine how many iterations Y to train by scale (depends mostly on the size of the dataset, you may refer to the appendix for reference).
  3. Run
python train.py --image-path X --batch-size 16 --visualize --niter Y --min-size 25 --checkname X_result --SAVE-MODEL --SAVE-IMGS

Generated images, tensorboard logs and trained models are stored in MetaInternalLearning/run/X_result.

The default input format is jpg. Use '--file-suffix png' for .png files.

Examples from paper -

Places-50 -

python train.py --image-path data/places_50 --batch-size 16 --visualize --niter 4000  --min-size 28 --checkname places_50_result --SAVE-MODEL --SAVE-IMGS

LSUN-50

python train.py --image-path data/lsun_50 --batch-size 16 --visualize --niter 5000  --checkname lsun_50_result --SAVE-MODEL --SAVE-IMGS

Valley dataset can be downloaded here - http://places2.csail.mit.edu/download.html (256x256 small images) and can be divided into subsets as mentioned in the paper.

V500 -

python train.py --image-path data/V500 --batch-size 16 --visualize --niter 25000 --min-size 25 --checkname v500_result --ar 1 --SAVE-MODEL 

V2500 -

python train_dataset_parallel.py --image-path data/V2500 --batch-size 16 --niter 100000 --rec-weight 50 --min-size 25 --checkname v2500_result --ar 1 --SAVE-MODEL 

V5000 -

python train_dataset_parallel.py --image-path data/V5000 --batch-size 16 --niter 150000 --rec-weight 50 --min-size 25 --checkname v5000_result --ar 1 --SAVE-MODEL 

Applications

Coming soon!

Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022