sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

Overview

Introduction

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

Documents

In English

https://sssegmentation.readthedocs.io/en/latest/

Supported

Supported Backbones

Supported Models

Supported Datasets

Citation

If you use this framework in your research, please cite this project.

@misc{ssseg2020,
    author = {Zhenchao Jin},
    title = {SSSegmentation: A general framework for strongly supervised semantic segmentation},
    year = {2020},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/SegmentationBLWX/sssegmentation}},
}

References

[1]. https://github.com/open-mmlab/mmcv
[2]. https://github.com/open-mmlab/mmsegmentation
Comments
  • Training on custom dataset with 4 channels

    Training on custom dataset with 4 channels

    Hi, I want to train my own dataset which has images in 4 channels - RGB images and IR(infrared) images. Could you help me out with that? How can i modify the codes of this repo to accommodate that extra channel?

    opened by cspearl 4
  • how to train with multi-gpu in one machine

    how to train with multi-gpu in one machine

    hi,i wanna train the model with 4 gpus in one machine however, your code 'distrain.sh' and 'train.py' can only train with distributed mode in multi-machine how can i modify the code ?

    opened by Kenneth-X 3
  • isnet:imagelevel.py

    isnet:imagelevel.py

    imagelevel.py : 47: feats_il = self.correlate_net(x, torch.cat([x_global, x], dim=1))

    isanet.py: 47:context = super(SelfAttentionBlock, self).forward(x, x)

    is there any problem? bug?

    opened by shujunyy123 3
  • How to modify parameters to use single card training?

    How to modify parameters to use single card training?

    How to modify parameters to use single card training?

    In addition to modifying the following in config:

    SEGMENTOR_CFG.update(distributed{'is_on':False})

    opened by kakamie 1
  • SWIN-B with DeepLabv3+ training on custom dataset

    SWIN-B with DeepLabv3+ training on custom dataset

    Hi, I am learning about Segmentation and want to try out the segmentation my custom data set. Could you please provide steps on how to use supported backbones with some particular architectures?

    If I want to use SWIN-B as my backbone on DeepLabV3+ using a custom dataset, what should be the commands and all. I could not find anything on the docs and on the github page. Could you please help.

    opened by deshwalmahesh 1
  • Is there should be 'continue'?

    Is there should be 'continue'?

    https://github.com/SegmentationBLWX/sssegmentation/blob/7a405b1a4949606deae067223ebd68cceec6b225/ssseg/modules/models/memorynet/memory.py#L176

    If there are more than one 'num_feats_per_cls' in the furture, 'break' will make this for loop only update the first memory_feature?

    opened by EricKani 1
  • 医学图像分割也很有意义,我想给你一些公开的医学图像数据集。哈哈哈哈

    医学图像分割也很有意义,我想给你一些公开的医学图像数据集。哈哈哈哈

    Hi @CharlesPikachu !UNet 也是大名鼎鼎的分割模型啊,它在医学图像分割领域是 SOTA,个人认为 Supported Models 列表里应该有名字,而且应该在 FCN 之后。哈哈哈 🥇

    虽然 PyTorch Hub 已经有预训练的 UNet 了,但我想要皮卡丘也有! 🛩️

    这里提供一些医学数据集给你参考:

    opened by S-HuaBomb 1
Releases(v1.0.0)
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022