Modification of convolutional neural net "UNET" for image segmentation in Keras framework

Overview

ZF_UNET_224 Pretrained Model

Modification of convolutional neural net "UNET" for image segmentation in Keras framework

Requirements

Python 3.*, Keras 2.1, Tensorflow 1.4

Usage

from zf_unet_224_model import ZF_UNET_224, dice_coef_loss, dice_coef
from keras.optimizers import Adam

model = ZF_UNET_224(weights='generator')
optim = Adam()
model.compile(optimizer=optim, loss=dice_coef_loss, metrics=[dice_coef])

model.fit(...)

Notes

Pretrained weights

Download: Weights for Tensorflow backend ~123 MB (Keras 2.1, Dice coef: 0.998)

Weights were obtained with random image generator (generator code available here: train_infinite_generator.py). See example of images from generator below.

Example of images from generator

Dice coefficient for pretrained weights: ~0.998. See history of learning below:

Log of dice coefficient during training process

Comments
  • Extended example

    Extended example

    Hi, I have created extended example based on your repository: https://github.com/mrgloom/keras-semantic-segmentation-example

    It also use random colors for foreground and background (not like lighter and darker like here https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model/blob/master/train_infinite_generator.py#L24 ), one idea behind it is that in that case network can learn 'shape of object' not just 'thresholding and separating background and foreground', also looks like using random colors make problem harder and network converges slower.

    Also I have experienced some problems:

    1. Netwoks not always converges on second run with fixed params even for this toy problem, looks like it depens on random seed.
    2. Dice loss and jaccard loss are harder to train than binary crossentropy, any ideas why? Network architecture is the same just loss differs, I even tried to load trained weights from binary crossentropy loss network and use them in dice loss network which show high dice coef.
    opened by mrgloom 8
  • Deeper network

    Deeper network

    I know this is not an issue, but I wanted to contact you to know how did you make the network deeper in keras for the DSTL competition using this model?

    opened by nassarofficial 6
  • Tensorflow problem

    Tensorflow problem

    When I use tensorflow-1.3.0 as backend, I get this kind of error:

    builtins.ValueError: Dimension 2 in both shapes must be equal, but are 3 and 32 for 'Assign' (op: 'Assign') with input shapes: [3,3,3,32], [3,3,32,3].
    
    opened by lawlite19 5
  • preprocess_batch for real data

    preprocess_batch for real data

    Here is preprocessing for the batch (looks like 256 should be 255 ;) ) https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model/blob/master/zf_unet_224_model.py#L27

    Is it ok for real images to use code like this or it should be calculated for entire dataset?

    batch=batch-np.mean(batch)
    batch=batch/np.std(batch)
    

    Also how crucial is impact of data normalization for U-net? In my tests even on this simple synthetic data network doesn't converges if input is not normalized.

    opened by mrgloom 2
  • Applying pretrained weights to 128*128 size image

    Applying pretrained weights to 128*128 size image

    You have generated pretrained weights for 224224 input size, but I have 128128. How can we use such weights in this situation, but without padding/upsampling 128*128 images. Sorry for silly question - is it worth trying in kaggle salt competition?

    opened by Diyago 1
  • Attribute Error

    Attribute Error

    Traceback (most recent call last): File "train.py", line 11, in import segmentation_models as sm File "/home/melih/anaconda3/envs/ai/lib/python3.6/site-packages/segmentation_models/init.py", line 98, in set_framework(_framework) File "/home/melih/anaconda3/envs/ai/lib/python3.6/site-packages/segmentation_models/init.py", line 68, in set_framework import efficientnet.keras # init custom objects File "/home/melih/anaconda3/envs/ai/lib/python3.6/site-packages/efficientnet/keras.py", line 17, in init_keras_custom_objects() File "/home/melih/anaconda3/envs/ai/lib/python3.6/site-packages/efficientnet/init.py", line 71, in init_keras_custom_objects keras.utils.generic_utils.get_custom_objects().update(custom_objects) AttributeError: module 'keras.utils' has no attribute 'generic_utils'

    when I run the code, I got the result below but don't know why there is no generic_utils attribute in the library since there is in the keras.

    opened by melih1996 0
  • How to run the model for 6 input channels?

    How to run the model for 6 input channels?

    Is it possible to run the model for 6 input channels? Three inputs in that are RGB values and the other three are metrics I want to pass on into the architecture for my use case.

    opened by ShreyaPandita01 2
  • dice and jaccard metrics

    dice and jaccard metrics

    Thanks for the repo. I am wondering why do you use a smoothing factor of 1.0 in both dice and jaccard coefficients? Where does this value comes from? And what about using another smaller value close to zero, e.g. K.epsilon()

    opened by tinalegre 3
  • model.fit step

    model.fit step

    Hi! I would like to know how I should perform the model.fit instruction. model.fit(trainSet, mask_trainSet, batch_size=20, nb_epoch=1, verbose=1,validation_split=0.2, shuffle=True, callbacks=[model_checkpoint])¿? What I write in callback??

    And how should I use the weights if I wan't to use pretained weights??

    Thank you very much and sorry for the inconvenience!

    opened by AmericaBG 7
  • How to generate img and mask correctly

    How to generate img and mask correctly

    I run your code and then find that the img batch has a shape(16,224,224,3),but mask batch has a shape(16,1,224,224). I don't understand it.Can you explain it to me?I use my dataset to train unet and then the dice coef is high,but the real effect is bad.

    opened by wong-way 6
Releases(v1.0)
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022