Liecasadi - liecasadi implements Lie groups operation written in CasADi

Overview

liecasadi

liecasadi implements Lie groups operation written in CasADi, mainly directed to optimization problem formulation.

Inspired by A micro Lie theory for state estimation in robotics and the library Manif.

Install

pip install "liecasadi @ git+https://github.com/ami-iit/lie-casadi.git"

Implemented Groups

Group Description
SO3 3D Rotations
SE3 3D Rigid Transform

Example

from liecasadi import SE3, SO3, SE3Tangent, SO3Tangent

# Random quaternion + normalization
quat = (np.random.rand(4) - 0.5) * 5
quat = quat / np.linalg.norm(quat)
# Random vector
vector3d = (np.random.rand(3) - 0.5) * 2 * np.pi

# Create SO3 object
rotation = SO3(quat)

# Create Identity
identity = SO3.Identity()

# Create SO3Tangent object
tangent = SO3Tangent(vector3d)

# Random translation vector
pos = (np.random.rand(3) - 0.5) * 5

# Create SE3 object
transform = SE3(pos=pos, xyzw=quat)

# Random vector
vector6d = (np.random.rand(3) - 0.5) * 5

# Create SE3Tangent object
tangent = SO3Tangent(vector6d)
You might also like...
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images. git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Model search is a framework that implements AutoML algorithms for model architecture search at scale
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

Implements Gradient Centralization and allows it to use as a Python package in TensorFlow
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Implements MLP-Mixer: An all-MLP Architecture for Vision.
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

QueryFuzz implements a metamorphic testing approach to test Datalog engines.
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Comments
  • Problems running the example

    Problems running the example

    I tried installing the library as documented in the README and running the example.

    By installing the example as documented in the README:

    (castest) [email protected]:~$ pip install "liecasadi @ git+https://github.com/ami-iit/lie-casadi.git"
    Collecting liecasadi@ git+https://github.com/ami-iit/lie-casadi.git
      Cloning https://github.com/ami-iit/lie-casadi.git to /tmp/pip-install-jld36pa2/liecasadi_02974e872e9a41da95da2ba742a2bb6a
      Running command git clone --filter=blob:none --quiet https://github.com/ami-iit/lie-casadi.git /tmp/pip-install-jld36pa2/liecasadi_02974e872e9a41da95da2ba742a2bb6a
      Resolved https://github.com/ami-iit/lie-casadi.git to commit 4f538f354781243e600ce771c9236a43df83745d
      Installing build dependencies ... done
      Getting requirements to build wheel ... done
      Preparing metadata (pyproject.toml) ... done
    Collecting numpy>=1.20
      Using cached numpy-1.22.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB)
    Collecting casadi
      Using cached casadi-3.5.5-cp38-none-manylinux1_x86_64.whl (34.2 MB)
    Building wheels for collected packages: liecasadi
      Building wheel for liecasadi (pyproject.toml) ... done
      Created wheel for liecasadi: filename=liecasadi-0.1.dev39-py3-none-any.whl size=7882 sha256=078ab323d4479d39e5aa0a577a6150df54d9224d416b94c89d26adc5db0616be
      Stored in directory: /tmp/pip-ephem-wheel-cache-v0j9nv_a/wheels/7a/26/6a/62ad9ab4f348e178408f7d79d44555ed51514496949fcdb644
    Successfully built liecasadi
    Installing collected packages: casadi, numpy, liecasadi
    Successfully installed casadi-3.5.5 liecasadi-0.1.dev39 numpy-1.22.1
    

    You can see that casadi got installed via pip.

    Then, I tried to run the example and the example fails with:

    (castest) [email protected]:~/liecasadi/examples$ python manifold_optimization.py
    Traceback (most recent call last):
      File "manifold_optimization.py", line 4, in <module>
        import matplotlib.pyplot as plt
    ModuleNotFoundError: No module named 'matplotlib'
    

    This is due to matplotlib missing, and it make sense that this is not part of the dependencies of the library. If I then install matplot lib, then the example fails with:

    (castest) [email protected]:~/liecasadi/examples$ python manifold_optimization.py
    Traceback (most recent call last):
      File "manifold_optimization.py", line 9, in <module>
        from liecasadi import SO3, SO3Tangent
      File "/home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages/liecasadi/__init__.py", line 3, in <module>
        from .so3 import SO3, SO3Tangent
      File "/home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages/liecasadi/so3.py", line 9, in <module>
        from attr import field
    ModuleNotFoundError: No module named 'attr'
    

    This is a bit more tricky, as it requires to install the attrs package (note the final s, as the attr package will not work).

    After installing also attr, I get this error:

    (castest) [email protected]:~/liecasadi/examples$ python manifold_optimization.py
    Traceback (most recent call last):
      File "manifold_optimization.py", line 21, in <module>
        opti.subject_to(quat[k + 1] == (vector_SO3 + rotation_SO3).as_quat())
      File "/home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages/casadi/casadi.py", line 28146, in subject_to
        ret = self._subject_to(*args)
      File "/home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages/casadi/casadi.py", line 27470, in _subject_to
        return _casadi.Opti__subject_to(self, *args)
    RuntimeError: Error in Opti::subject_to [OptiNode] at .../casadi/core/optistack.cpp:96:
    .../casadi/core/optistack_internal.cpp:905: Assertion "!g.is_constant()" failed:
    You passed a constant to `subject_to`. You need a symbol to form a constraint.
    

    Furthermore, even if I did not reached this point, I noticed that the example refers ma27 (https://github.com/ami-iit/liecasadi/blob/c79d29e87d6d654e78d258a10bac9b2bbae35773/examples/manifold_optimization.py#L47), but by following the instruction of the repo casadi gets installed by pip, and I do not think that that version of casadi has hsl support enabled.

    Environments in which I run the tests:

    (castest) [email protected]:~/liecasadi/examples$ mamba list
    # packages in environment at /home/traversaro/mambaforge/envs/castest:
    #
    # Name                    Version                   Build  Channel
    _libgcc_mutex             0.1                 conda_forge    conda-forge
    _openmp_mutex             4.5                       1_gnu    conda-forge
    attrs                     21.4.0                   pypi_0    pypi
    ca-certificates           2021.10.8            ha878542_0    conda-forge
    casadi                    3.5.5                    pypi_0    pypi
    cycler                    0.11.0                   pypi_0    pypi
    fonttools                 4.29.1                   pypi_0    pypi
    kiwisolver                1.3.2                    pypi_0    pypi
    ld_impl_linux-64          2.36.1               hea4e1c9_2    conda-forge
    libffi                    3.4.2                h7f98852_5    conda-forge
    libgcc-ng                 11.2.0              h1d223b6_12    conda-forge
    libgomp                   11.2.0              h1d223b6_12    conda-forge
    libnsl                    2.0.0                h7f98852_0    conda-forge
    libstdcxx-ng              11.2.0              he4da1e4_12    conda-forge
    libzlib                   1.2.11            h36c2ea0_1013    conda-forge
    liecasadi                 0.1.dev39                pypi_0    pypi
    matplotlib                3.5.1                    pypi_0    pypi
    ncurses                   6.3                  h9c3ff4c_0    conda-forge
    numpy                     1.22.1                   pypi_0    pypi
    openssl                   3.0.0                h7f98852_2    conda-forge
    packaging                 21.3                     pypi_0    pypi
    pillow                    9.0.0                    pypi_0    pypi
    pip                       22.0.2             pyhd8ed1ab_0    conda-forge
    pyparsing                 3.0.7                    pypi_0    pypi
    python                    3.8.12          h0744224_3_cpython    conda-forge
    python-dateutil           2.8.2                    pypi_0    pypi
    python_abi                3.8                      2_cp38    conda-forge
    readline                  8.1                  h46c0cb4_0    conda-forge
    setuptools                60.6.0           py38h578d9bd_0    conda-forge
    six                       1.16.0                   pypi_0    pypi
    sqlite                    3.37.0               h9cd32fc_0    conda-forge
    tk                        8.6.11               h27826a3_1    conda-forge
    wheel                     0.37.1             pyhd8ed1ab_0    conda-forge
    xz                        5.2.5                h516909a_1    conda-forge
    zlib                      1.2.11            h36c2ea0_1013    conda-forge
    (castest) [email protected]:~/liecasadi/examples$ pip list --verbose
    Package         Version   Location                                                             Installer
    --------------- --------- -------------------------------------------------------------------- ---------
    attrs           21.4.0    /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    casadi          3.5.5     /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    cycler          0.11.0    /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    fonttools       4.29.1    /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    kiwisolver      1.3.2     /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    liecasadi       0.1.dev39 /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    matplotlib      3.5.1     /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    numpy           1.22.1    /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    packaging       21.3      /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    Pillow          9.0.0     /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    pip             22.0.2    /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages
    pyparsing       3.0.7     /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    python-dateutil 2.8.2     /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    setuptools      60.6.0    /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages
    six             1.16.0    /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages pip
    wheel           0.37.1    /home/traversaro/mambaforge/envs/castest/lib/python3.8/site-packages
    
    opened by traversaro 6
  • Fix manifpy test dependency

    Fix manifpy test dependency

    In order to check the correctness of the computations, I wrote some tests against Manif.

    It seems manifpy cannot be installed via PyPI. However, they provide installation instruction in https://github.com/artivis/manif/blob/devel/docs/pages/python/Quick-start.md.

    Although I can install the library using conda on my system, I'm not able to move the same logic in a workflow. manifpy seems to be installed but it is not found:

    ModuleNotFoundError: No module named 'manifpy'
    

    Am I doing something wrong?

    @traversaro @GiulioRomualdi do you have any suggestions?

    opened by Giulero 4
  • Remove `R_from_rpy(rpy)` method

    Remove `R_from_rpy(rpy)` method

    The method was badly implemented. Moreover, it's not really useful (it should be ok to call SO3.from_euler(rpy).as_matrix().

    • changed from_angle to from_euler
    • implemented to_euler
    opened by Giulero 1
Releases(v0.0.4)
  • v0.0.4(Nov 21, 2022)

    What's Changed

    • Remove R_from_rpy(rpy) method and add from/to Euler methods by @Giulero in https://github.com/ami-iit/liecasadi/pull/6

    Full Changelog: https://github.com/ami-iit/liecasadi/compare/v0.0.3...v0.0.4

    Source code(tar.gz)
    Source code(zip)
  • v0.0.3(Oct 12, 2022)

    What's Changed

    • Add quaternion derivative by @Giulero in https://github.com/ami-iit/liecasadi/pull/4
    • Add dual quaternion class by @Giulero in https://github.com/ami-iit/liecasadi/pull/5

    Full Changelog: https://github.com/ami-iit/liecasadi/compare/v0.0.2...v0.0.3

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(May 18, 2022)

    What's Changed

    • Deploy library on PyPi by @Giulero in https://github.com/ami-iit/liecasadi/pull/3

    Full Changelog: https://github.com/ami-iit/liecasadi/compare/v0.0.1...v0.0.2

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Feb 16, 2022)

Owner
Artificial and Mechanical Intelligence
Artificial and Mechanical Intelligence
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022