Parameterising Simulated Annealing for the Travelling Salesman Problem

Overview

Parameterising Simulated Annealing for the Travelling Salesman Problem

animated

Abstract

The Travelling Salesman Problem is a well known NP-Hard problem. Given a list of cities, find the shortest path that visits all cities once.

Simulated annealing is a well known stochastic method for solving optimisation problems and is a well known non-exact algorithm for solving the TSP. However, it's effectiveness is dependent on initial parameters such as the starting temperature and cooling rate which is often chosen empirically.

The goal of this project is to:

  • Determine if the optimal starting temperature and cooling rate can be parameterised off the input
  • Visualise the solving process of the TSP

Usage

Running the code

Examples of common commands to run the files are shown below. However, both src/main.py and src/benchmark.py have a --help that explains the optional flags.

# To visualise annealing on a problem set from the input file
python3 -m src.main -f <input_file>

# To visualise TSP on a random graph with 
   
     number of cities
   
python3 -m src.main -c <city_count>

# Benchmark the parameters using all problems in the data folder
python3 -m src.benchmark

Keyboard Controls

There are also ways to control the visualisation through key presses while it plays.

Key Action
Space Bar Pauses or unpauses the solver
Left / Right arrow Control how frequently the frame is redrawn
c Toggles showing the cities as nodes (this is off by default as it causes lag)

Creating your own model

If you would like to create your own instance of the TSP problem and visualise it:

  1. Create a new file
  2. Within this file ensure you have the line NODE_COORD_SECTION, and below that EOF.
  3. Between those two lines, you can place the coordinates of the cities, i.e. for the nth city, have a line like , where x and y are the x and y coordinates of the city.
  4. Run python3 -m src.main -f , where is the path to the file you have just made.

Files

File / Folder Purpose
data This contains TSP problems in .tsp files and their optimal solution in .opt.tour files, taken from TSPLIB
report The report detailing the Simulated Annealing and the experimentation
results The output directory containing results of the tests
src/benchmark.py Code for benchmarking different temperatures and cooling rates using the problems in the data folder
src/main.py Driver code to start the visualisation
src/setup.py Code for loading in city coordinates from a file, or generating random ones
src/solvers.py Module containing the python implementations of TSP solving algorithms

FAQ

What do you use to generate the graphics?

This project uses the p5py library for visualisation. Unfortunately, (to of my knowledge) this may not work with WSL.

What are the results of your research?

Idk. Still working on it.

What can I do to contribute?

Pog.

This is more of a "what I would I do if I have more time" but whatever, let's say you actually are interested. Disclaimer - the code isn't particularly polished (from me pivoting project ideas multiple times).

  • If you're up for a challenge, it would be interesting to implement LKH (Lin-Kernighan heuristic) efficiently
  • Implement other algorithms - they just need to extend the Solver abstract class to work with the frontend
  • Add a whatever city you want and it's coordinates to data/world.tsp!
Owner
Gary Sun
hi
Gary Sun
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022