Utilities to bridge Canvas-generated course rosters with GitLab's API.

Overview

gitlab-canvas-utils

A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository creation, all the way to cloning repos and adding users to a shared resources repository.

Installation

To install the included scripts, run:

./install --all

To install the scripts and man pages for development, run:

./install --symlink

To uninstall the scripts, run:

$ ./uninstall.sh

Utilities

There are currently 7 scripts/utilities:

  1. addtorepos - adds students to a set of specified repositories as reporters
  2. checkout - checks out cloned student repositories to commit IDs submitted for a specific assignment.
  3. clone - clones student repositories.
  4. createrepos - creates course GitLab course and student repos.
  5. pushfiles - adds files to cloned student repositories, pushing the changes.
  6. rmfiles - removes files from cloned student repositories, pushing the changes.
  7. roster - scrapes Canvas for a CSV of the student roster.

Read the supplied man pages for more information on each of these utilities.

Creating GitLab course, student repos, and adding students to resources repository
$ roster | createrepos | addtoresources
Cloning all student repos and checking them out to submitted commit IDs
$ roster | clone | checkout --asgn=5

Paths

To get (arguably) the full experience of these utilities, you should add the installed scripts directory to your $PATH and the installed man page directory to your $MANPATH.

To add the scripts directory:

$ export PATH=$PATH:$HOME/.config/gcu/scripts

To add the man directory (the double colon is intentional):

$ export MANPATH=::$MANPATH:$HOME/.config/gcu/man

You may want to add these exports to your shell configuration files.

Course Configuration

After running the installation script, a configuration file will need to be modifed for the specific course that these utilities will be used for. To modify the configuration file, run:

vi $HOME/.config/gcu/config.toml

A template configuration file will be supplied during installation if one does not already exist. The configuration file should have this basic structure:

canvas_url = "https://canvas.ucsc.edu"
canvas_course_id = 42878
canvas_token = "<your token here>"
course = "cse13s"
quarter = "spring"
year = "2021"
gitlab_server = "https://git.ucsc.edu"
gitlab_token = "<your token here>"
gitlab_role = "developer"
template_repo = "https://git.ucsc.edu/euchou/cse13s-template.git"
  • canvas_url: the Canvas server that your course is hosted on.
  • canvas_course_id: the Canvas course ID for your course. The one in the template is for the Spring 2021 offering of CSE 13S. You can find any course ID directly from the course page's url on Canvas.
  • canvas_token: your Canvas access token as a string. To generate a Canvas token, head to your account settings on Canvas. There will be a button to create a new access token under the section titled Approved Integrations. Note that you must have at least TA-level privilege under the course you want to use these scripts with.
  • course, quarter, and year should reflect, as one can imagine, the course, quarter, and year in which the course is held.
  • gitlab_server: the GitLab server that you want to create the course group and student repos on.
  • gitlab_token: your GitLab token as a string. Your token should have API-level privilege.
  • gitlab_role: the default role of students for their individual or shared repositories.
  • template_repo: the template repository to import and use as a base for student repositories. Note that this template repository will need to be publically visible.

Contributing

If you are interested in contributing to these scripts, send an email to [email protected]. Questions are welcomed as well.

Owner
Eugene Chou
Eugene Chou
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track πŸ˜ƒ More c

minerva.ml 46 Jun 22, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
πŸ₯ˆ78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研穢陒 3D η»„ 155 Dec 29, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022