Code for pre-training CharacterBERT models (as well as BERT models).

Overview

Pre-training CharacterBERT (and BERT)

This is a repository for pre-training BERT and CharacterBERT.

DISCLAIMER: The code was largely adapted from an older version of NVIDIA's repository for benchmarking the pre-training of BERT using Automatic Mixed Precision. The original code was tweaked to include CharacterBERT and other minor elements.

Python Environment

First of all, we will need to have a Python environment with the required packages installed.

NOTE: This was tested with NVIDIA V100 (16GB/32GB) GPUs and a cuda 10.2 installation.

# Create a Python 3.8 environment via conda 
conda create --name pretraining python=3.8 -y
conda activate pretraining

# For showing progress bars
pip install tqdm

# For extracting raw text from Wikipedia dumps
cd external/
git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor/
git checkout 6490f5361d7658208ad7f8e5deeb56ee0fe9e02f
cd ../..

# For parsing Wikiextractor outputs to get Wikipedia text
pip install beautifulsoup4

# For segmenting documents into sentences
pip install nltk
python -c "import nltk;nltk.download('punkt')"

# For saving pre-training data into .hdf5 files
pip install h5py

# For basic tokenization and BERT/CharacterBERT models in PyTorch
cd external/
git clone https://github.com/helboukkouri/transformers.git
cd transformers/
git checkout 756b8efa698aad0294735376bc147909d1e6b959
pip install -e .
cd ../..

# Actual PyTorch installation
conda install pytorch=1.7.1 cudatoolkit=10.2 -c pytorch -y

# For monitoring training progress
pip install tensorboard

# For using Automatic Mixed Precision (speeds up training) 
# NOTE: this will require some space in /tmp/ during compilation
cd external/
git clone https://github.com/NVIDIA/apex.git
cd apex/
git checkout a78ccf0b3e3f7130b3f157732dc8e8e651389922
pip install \
    -v --disable-pip-version-check --no-cache-dir \
    --global-option="--cpp_ext" --global-option="--cuda_ext" ./
cd ../..

# Configuration and vocabulary files for BERT (base, uncased)
mkdir ./data/bert-base-uncased/
cd ./data/bert-base-uncased/
wget https://huggingface.co/bert-base-uncased/resolve/main/config.json
wget https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt
cd ../..

# Configuration file for CharacterBERT (base, uncased)
mkdir ./data/character-bert/
cd ./data/character-bert/
wget https://huggingface.co/helboukkouri/character-bert/resolve/main/config.json
cd ../..

Now we can move on to the corpus preparation step.

Corpus Preparation

Downloading the corpus

First, we will need to get a corpus of texts. Let's download and use the 2021-01-01 dump of English Wikipedia.

Assuming that:

  • the environment variable $WORKDIR contains a path to this repository

  • we have already activated our conda environment using: conda activate pretraining

We can run this command to download the wikipedia dump

WORKDIR=$WORKDIR \
    python download_wikipedia.py --language='en'

If you don't want to download the whole dump you can experiment with a sample first by adding the --debug flag.

WORKDIR=$WORKDIR \
    python download_wikipedia.py --language='en' --debug

NOTE: if you use --debug then you will need to adapt all the commands by replacing the corpus name wikipedia_en with wikipedia_sample.

Extraction, Tokenization & Formatting

Since Wikipedia dumps come as a large .xml archives, we need to extract the process the file we just downloaded into a single .txt file with raw text. Then, we will need to format it in a specific way (one sentence per line and a blank line between sentences from different Wikipedia articles) to allow for generating examples for the Next Sentence Prediction task (NSP). We also tokenize each sentence to be able to easily generate Masked Language Modeling examples as well in future steps.

The following command runs both the extraction and formatting steps then removes the extracted document-level corpus only keeps the formatted sentence-level we need.

NOTE: you can remove the --delete_document_level_corpus flag to keep the original extracted corpus.

WORKDIR=$WORKDIR \
    python format_wikipedia.py \
        --archive_path=$WORKDIR/data/downloaded/wikipedia_en/wikipedia_en.xml.bz2 \
        --delete_document_level_corpus

After running the command above, you should be able to find a single text file in data/formatted/wikipedia_en/.

NOTE 1: if you want to use a corpus other than Wikipedia then add a component in utils/format and re-use the formatting step from format_wikipedia.py.

NOTE 2: if you want to process the whole English Wikipedia then run the command and forget about it, it will take a while... 😴 This process can probably be better optimized.

Pre-training Data generation

Now that we have our formatted Wikipedia corpus, there is one more step before we can actually run the pre-training. In fact, in order to pre-train models in a reasonable amount of time, we will be relying on multiple GPUs, DistributedDataParallel and the torch.distributed module. This will effectively have a copy of the model on each GPU, so we will need to split our corpus into shards (or chunks) so that each GPUs can process its own shard while others do the same.

First, we will split the corpus into 4096 training and 16 validation shards of equal size.

NOTE: you can change the amount of shards as you like. These numbers were chosen so to keep the memory requirement for loading a single shard relatively low as well as to keep validation steps (a single epoch through the validation shards) relatively fast.

WORKDIR=$WORKDIR \
    python make_shards.py \
        --formatted_corpus_path=$WORKDIR/data/formatted/wikipedia_en/wikipedia_en.formatted.txt \
        --n_training_shards=4096 \
        --n_validation_shards=16 \
        --random_seed=42

The command above creates multiple training{n}.txt and validation.{n}.txt files in data/shards/wikipedia_en/.

The second and last step is to convert each shard into and .hdf5 file containing the actual pre-training data. But before doing that, we need to define a vocabulary for the Masked Language Modelling if we want to pre-train CharacterBERT.

NOTE 1: In fact, when pre-training BERT, since all original tokens from the corpus are split into elements of the WordPiece vocabulary, we can simply re-use this same vocabulary as a target space for MLM. And since CharacterBERT does not rely on WordPieces, it cannot do that and requires a fresh token vocabulary for Masked Language Modeling.

NOTE 2: Be careful when re-training a model from a domain A on texts from a domain B as this will require a new MLM vocabulary (for B) which in turn would require replacing the output layer in prior checkpoints (from A) before resuming pre-training. As for this version of the code, you will need to do that manually before running the pre-training.

WORKDIR=$WORKDIR \
    python build_mlm_vocabulary.py \
        --formatted_corpus_path=$WORKDIR/data/formatted/wikipedia_en/wikipedia_en.formatted.txt

After building a MLM vocabulary (in cases where we want to pre-train CharacterBERT) we can now generate the data for both phases 1 and 2 of the pre-training process.

  • phase 1: maximum input length of 128 and maximum number of masked tokens per input of 20.
WORKDIR=$WORKDIR \
    python make_hdf5.py \
        --shards_path=$WORKDIR/data/shards/wikipedia_en/ \
        --output_directory=$WORKDIR/data/hdf5/wikipedia_en/character_bert/128_20/ \
        --max_input_length=128 \
        --max_masked_tokens_per_input=20 \
        --is_character_bert  # change this accordingly
  • phase 2: maximum input length of 512 and maximum number of masked tokens per input of 80.
WORKDIR=$WORKDIR \
    python make_hdf5.py \
        --shards_path=$WORKDIR/data/shards/wikipedia_en/ \
        --output_directory=$WORKDIR/data/hdf5/wikipedia_en/character_bert/512_80/ \
        --max_input_length=512 \
        --max_masked_tokens_per_input=80 \
        --is_character_bert  # change this accordingly

NOTE: if you want to generate data for BERT instead of CharacterBERT, remove the --is_character_bert flag and adapt the output_directory path.

Pre-training

Launching the pre-training

At this point we are all set to start pre-training models. For that, we can simply run the following bash scripts.

NOTE: you may need to change the value of WORKDIR in the pre-training scripts.

  • For phase 1:
bash $WORKDIR/bash_scripts/run_pretraining.character_bert.step_1.sh

or

bash $WORKDIR/bash_scripts/run_pretraining.bert.step_1.sh
  • For phase 2:
bash $WORKDIR/bash_scripts/run_pretraining.character_bert.step_2.sh

or

bash $WORKDIR/bash_scripts/run_pretraining.bert.step_2.sh

NOTE 1: you should change the NUM_GPUs variable inside the bash scripts to match the number of GPUs on your machine. The parallelization will be handled automatically.

NOTE 2: the bash scripts support distributed training on multiple gpus within a single node. Bash scripts that can run on multiple nodes with sbatch will be available soon.

Running the bash scripts on large enough corpora should produce good results. However, if you want to customize the pre-training process, you could change any of the parameters from pretrain_model.py.

For a complete list of parameters, run the following command.

WORKDIR=$WORKDIR python pretrain_model.py --help

In particular, if you don't want to run a validation step before each checkpoint you can remove the --do_validation flag. This will make the pre-training process faster but as a result you will not be able to tell if the language models are overfitting the training data.

Monitoring the pre-training

While the models are pre-training you can monitor the average training and validation losses (MLM + NSP loss) using TensorBoard.

tensorboard --logdir=$WORKDIR/.tensorboard_logs/

References

Please cite our paper if you use CharacterBERT in your work.

@inproceedings{el-boukkouri-etal-2020-characterbert,
    title = "{C}haracter{BERT}: Reconciling {ELM}o and {BERT} for Word-Level Open-Vocabulary Representations From Characters",
    author = "El Boukkouri, Hicham  and
      Ferret, Olivier  and
      Lavergne, Thomas  and
      Noji, Hiroshi  and
      Zweigenbaum, Pierre  and
      Tsujii, Jun{'}ichi",
    booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
    month = dec,
    year = "2020",
    address = "Barcelona, Spain (Online)",
    publisher = "International Committee on Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.coling-main.609",
    doi = "10.18653/v1/2020.coling-main.609",
    pages = "6903--6915",
    abstract = "Due to the compelling improvements brought by BERT, many recent representation models adopted the Transformer architecture as their main building block, consequently inheriting the wordpiece tokenization system despite it not being intrinsically linked to the notion of Transformers. While this system is thought to achieve a good balance between the flexibility of characters and the efficiency of full words, using predefined wordpiece vocabularies from the general domain is not always suitable, especially when building models for specialized domains (e.g., the medical domain). Moreover, adopting a wordpiece tokenization shifts the focus from the word level to the subword level, making the models conceptually more complex and arguably less convenient in practice. For these reasons, we propose CharacterBERT, a new variant of BERT that drops the wordpiece system altogether and uses a Character-CNN module instead to represent entire words by consulting their characters. We show that this new model improves the performance of BERT on a variety of medical domain tasks while at the same time producing robust, word-level, and open-vocabulary representations.",
}
Owner
Hicham EL BOUKKOURI
PhD Student working on Domain Adaptation of Word Embeddings.
Hicham EL BOUKKOURI
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022