PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

Overview

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

The paper: https://arxiv.org/abs/1704.03296

What makes the deep learning network think the image label is 'pug, pug-dog' and 'tabby, tabby cat':

Dog Cat

A perturbation of the dog that caused the dog category score to vanish:

Perturbed

What makes the deep learning network think the image label is 'flute, transverse flute':

Flute


Usage: python explain.py <path_to_image>

This is a PyTorch impelentation of

"Interpretable Explanations of Black Boxes by Meaningful Perturbation. Ruth Fong, Andrea Vedaldi" with some deviations.

This uses VGG19 from torchvision. It will be downloaded when used for the first time.

This learns a mask of pixels that explain the result of a black box. The mask is learned by posing an optimization problem and solving directly for the mask values.

This is different than other visualization techniques like Grad-CAM that use heuristics like high positive gradient values as an indication of relevance to the network score.

In our case the black box is the VGG19 model, but this can use any differentiable model.


How it works

Equation

Taken from the paper https://arxiv.org/abs/1704.03296

The goal is to solve for a mask that explains why did the network output a score for a certain category.

We create a low resolution (28x28) mask, and use it to perturb the input image to a deep learning network.

The perturbation combines a blurred version of the image, the regular image, and the up-sampled mask.

Wherever the mask contains low values, the input image will become more blurry.

We want to optimize for the next properties:

  1. When using the mask to blend the input image and it's blurred versions, the score of the target category should drop significantly. The evidence of the category should be removed!
  2. The mask should be sparse. Ideally the mask should be the minimal possible mask to drop the category score. This translates to a L1(1 - mask) term in the cost function.
  3. The mask should be smooth. This translates to a total variation regularization in the cost function.
  4. The mask shouldn't over-fit the network. Since the network activations might contain a lot of noise, it can be easy for the mask to just learn random values that cause the score to drop without being visually coherent. In addition to the other terms, this translates to solving for a lower resolution 28x28 mask.

Deviations from the paper

The paper uses a gaussian kernel with a sigma that is modulated by the value of the mask. This is computational costly to compute since the mask values are updated during the iterations, meaning we need a different kernel for every mask pixel for every iteration.

Initially I tried approximating this by first filtering the image with a filter bank of varying gaussian kernels. Then during optimization, the input image pixel would use the quantized mask value to select an appropriate filter bank output pixel (high mask value -> lower channel).

This was done using the PyTorch variable gather/select_index functions. But it turns out that the gather and select_index functions in PyTorch are not differentiable by the indexes.

Instead, we just compute a perturbed image once, and then blend the image and the perturbed image using:

input_image = (1 - mask) * image + mask * perturbed_image

And it works well in practice.

The perturbed image here is the average of the gaussian and median blurred image, but this can really be changed to many other combinations (try it out and find something better!).

Also now gaussian noise with a sigma of 0.2 is added to the preprocssed image at each iteration, inspired by google's SmoothGradient.

Owner
Jacob Gildenblat
Machine learning / Computer Vision.
Jacob Gildenblat
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022