K-FACE Analysis Project on Pytorch

Related tags

Deep Learningmixface
Overview

Installation

Setup with Conda

# create a new environment
conda create --name insightKface python=3.7 # or over
conda activate insightKface

#install the appropriate cuda version of pytorch(https://pytorch.org/)
#example:
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge

# install requirements
pip install -r requirements.txt

Data prepration

K-FACE Database

K-FACE AI-hub.

Detail configuration about K-FACE is provided in the paper below.

K-FACE: A Large-Scale KIST Face Database in Consideration with Unconstrained Environments

K-FACE sample images

title

Structure of the K-FACE database

title

Configuration of K-FACE

Configuration_of_KFACE

Detection & Alignment on K-FACE

"""
    ###################################################################

    K-Face : Korean Facial Image AI Dataset
    url    : http://www.aihub.or.kr/aidata/73

    Directory structure : High-ID-Accessories-Lux-Emotion
    ID example          : '19062421' ... '19101513' len 400
    Accessories example : 'S001', 'S002' .. 'S006'  len 6
    Lux example         : 'L1', 'L2' .. 'L30'       len 30
    Emotion example     : 'E01', 'E02', 'E03'       len 3
    
    ###################################################################
"""

# example
cd detection

python align_kfaces.py --ori_data_path '/data/FACE/KFACE/High' --detected_data_path 'kface_retina_align_112x112'

Training and test datasets on K-FACE

Train ID Accessories Lux Expression Pose #Image Variance
T1 A1 1000 E1 C4-10 2,590 Very Low
T2 A1-2 400-1000 E1 C4-10 46,620 Low
T3 A1-A4 200-1000 E1-2 C4-13 654,160 Middle
T4 A1-A6 40-1000 E1-3 C1-20 3,862,800 High
Test ID Accessories Lux Expression Pose #Pairs Variance
Q1 A1 1000 E1 C4-10 1,000 Very Low
Q2 A1-2 400-1000 E1 C4-10 100,000 Low
Q3 A1-4 200-1000 E1-2 C4-13 100,000 Middle
Q4 A1-6 40-1000 E1-3 C1-20 100,000 High

MS1M-RetinaFace (MS1M-R)

MS1M-RetinaFace download link:

  1. The Lightweight Face Recognition Challenge & Workshop.

  2. https://github.com/deepinsight/insightface/wiki/Dataset-Zoo

#Preprocess 'train.rec' and 'train.idx' to 'jpg'

# example
cd detection

python rec2image.py --include '/data/FACE/ms1m-retinaface-t1/' --output 'MS1M-RetinaFace'

Inference

After downloading the pretrained model, run test.py.

Pretrained Model

For all experiments, ResNet-34 was chosen as the baseline backbone.

The model was trained on KFACE

Head&Loss Q1 Q2 Q3 Q4
ArcFace (s=16, m=0.25) 98.30 94.77 87.87 85.41
SN-pair (s=64) 99.20 95.01 91.84 89.74
MixFace (e=1e-22, m=0.25) 100 96.37 92.36 89.80

Note:

  • For ArcFace, We tested (s,m)={(16,0.5), (32,0.25), (64,0.25), (32,0.5), (64,0.5)}, but the model was not trained properly So, we apply (s,m)=(16,0.25).
cd recognition

# example
python test.py --weights 'kface.mixface.1e-22m0.25.best.pt' --dataset 'kface' --data_cfg 'data/KFACE/kface.T4.yaml'

The model was trained on MS1M-R

Head&Loss Q2 Q3 Q4 LFW CFP-FP AgeDB-30
ArcFace (s=64, m=0.5) 98.71 86.60 82.03 99.80 98.41 98.80
SN-pair (s=64) 92.85 76.36 70.08 99.55 96.20 95.46
MixFace (e=1e-22, m=0.5) 97.36 82.89 76.95 99.68 97.74 97.25
cd recognition

# example
python test.py --weights 'face.mixface.1e-22m0.5.best.pt' --dataset 'face' --data_cfg 'data/face.all.yaml'

The model was trained on MS1M-R+T4

Head&Loss Q2 Q3 Q4 LFW CFP-FP AgeDB-30
ArcFace (s=8, m=0.25) 76.58 73.13 71.38 99.46 96.75 93.83
SN-pair (s=64) 98.37 94.98 93.33 99.45 94.90 93.45
MixFace (e=1e-22, m=0.5) 99.27 96.85 94.79 99.53 96.32 95.56

Note:

  • For ArcFace, we tested (s,m)={(8, 0.5), (16, 0.25), (16,0.5), (32,0.25), (64,0.25), (32,0.5), (64,0.5)}, but the model was not trained properly So, we apply (s,m)=(8,0.25).
cd recognition

# example
python test.py --weights 'merge.mixface.1e-22m0.5.best.pt' --dataset 'merge' --data_cfg 'data/merge.yaml'

Training

Multi-GPU DataParallel Mode

Example script for training on KFACE

cd recognition

# example 
python train.py --dataset 'kface' --head 'mixface' --data_cfg 'data/KFACE/kface.T4.yaml' --hyp 'data/face.hyp.yaml' --head_cfg 'models/head.kface.cfg.yaml' --name 'example' --device 0,1

Multi-GPU DistributedDataParallel Mode

Example script for training on KFACE

cd recognition

# example
python -m torch.distributed.launch --nproc_per_node 2 train.py --dataset 'kface' --head 'mixface' --data_cfg 'data/KFACE/kface.T4.yaml' --hyp 'data/face.hyp.yaml' --head_cfg 'models/head.kface.cfg.yaml' --name 'example' --device 0,1

Note:

  • For MS1M-R, change args --dataset face, --data_cfg data/face.all.yaml, and --head_cfg model/head.face.cfg.yaml.
  • For MS1M-R+T4, change args --dataset merge, --data_cfg data/merge.yaml, and --head_cfg model/head.merge.cfg.yaml.
  • The args --nodrop should be used if you train with the metric loss(e.g., SN-pair, N-pair, etc.) on MS1M-R or MS1M-R+T4.
  • The args --double should be used if you train with the metric loss(e.g., SN-pair, N-pair, etc.) or MixFace on MS1M-R or MS1M-R+T4.
  • DistributedDataParallel is only available to classification loss(e.g., arcface, cosface, etc.)

Reference code

Thanks for these source codes porviding me with knowledges to complete this repository.

  1. https://github.com/biubug6/Pytorch_Retinaface.
  2. https://github.com/deepinsight/insightface.
  3. https://github.com/ultralytics/yolov5
Owner
Jung Jun Uk
Jung Jun Uk
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022