A Python implementation of GRAIL, a generic framework to learn compact time series representations.

Overview

GRAIL

A Python implementation of GRAIL, a generic framework to learn compact time series representations.

Requirements

  • Python 3.6+
  • numpy
  • scipy
  • tslearn

Installation

Installation using pip:

pip install grailts

To install from the source:

python setup.py install

Usage

Full Example

Here is an example where we load a UCR dataset and run approximate k-nearest neighbors on its GRAIL representations:

from GRAIL.TimeSeries import TimeSeries
from GRAIL.Representation import GRAIL
from GRAIL.kNN import kNN

TRAIN, train_labels = TimeSeries.load("ECG200_TRAIN", "UCR")
TEST, test_labels = TimeSeries.load("ECG200_TEST", "UCR")

representation = GRAIL(kernel="SINK", d = 100, gamma = 5)
repTRAIN, repTEST = representation.get_rep_train_test(TRAIN, TEST, exact=True)
neighbors, _, _ = kNN(repTRAIN, repTEST, method="ED", k=5, representation=None,
                              pq_method='opq')

print(neighbors)

Loading Datasets

To load UCR type datasets:

TRAIN, train_labels = TimeSeries.load("ECG200_TRAIN", "UCR")
TEST, test_labels = TimeSeries.load("ECG200_TEST", "UCR")

In this package, we assume that each row of the datasets is a time series.

Fetch GRAIL Representations

To fetch exact GRAIL representations of a training and a test dataset:

representation = GRAIL(kernel="SINK", d = 100, gamma = 5)
repTRAIN, repTEST = representation.get_rep_train_test(TRAIN, TEST, exact=True)

Here d specifies the number of landmark series, and gamma specifies the hyperparameter used for the SINK kernel. If gamma is not specified, it will be tuned by the algorithm.

If a single dataset is used instead:

repX = representation.get_representation(X)

Get Approximate k-Nearest-Neighbors

To get the approximate k-Nearest-Neighbors of TEST in TRAIN use:

neighbors, correlations, return_time = kNN(repTRAIN, repTEST, method="ED", k=5, representation=None,
                              pq_method='opq')

Note that Euclidean Distance in the GRAIL representation space estimates the SINK correlation in the original space.

Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

Paweł Rościszewski 131 Dec 12, 2022
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
Uber Open Source 1.6k Dec 31, 2022