CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

Related tags

Deep LearningCoANet
Overview

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

This paper (CoANet) has been published in IEEE TIP 2021.

This code is licensed for non-commerical research purpose only.

Introduction

Extracting roads from satellite imagery is a promising approach to update the dynamic changes of road networks efficiently and timely. However, it is challenging due to the occlusions caused by other objects and the complex traffic environment, the pixel-based methods often generate fragmented roads and fail to predict topological correctness. In this paper, motivated by the road shapes and connections in the graph network, we propose a connectivity attention network (CoANet) to jointly learn the segmentation and pair-wise dependencies. Since the strip convolution is more aligned with the shape of roads, which are long-span, narrow, and distributed continuously. We develop a strip convolution module (SCM) that leverages four strip convolutions to capture long-range context information from different directions and avoid interference from irrelevant regions. Besides, considering the occlusions in road regions caused by buildings and trees, a connectivity attention module (CoA) is proposed to explore the relationship between neighboring pixels. The CoA module incorporates the graphical information and enables the connectivity of roads are better preserved. Extensive experiments on the popular benchmarks (SpaceNet and DeepGlobe datasets) demonstrate that our proposed CoANet establishes new state-of-the-art results.

SANet

Citations

If you are using the code/model provided here in a publication, please consider citing:

@article{mei2021coanet,
title={CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery},
author={Mei, Jie and Li, Rou-Jing and Gao, Wang and Cheng, Ming-Ming},
journal={IEEE Transactions on Image Processing},
volume={30},
pages={8540--8552},
year={2021},
publisher={IEEE}
}

Requirements

The code is built with the following dependencies:

  • Python 3.6 or higher
  • CUDA 10.0 or higher
  • PyTorch 1.2 or higher
  • tqdm
  • matplotlib
  • pillow
  • tensorboardX

Data Preparation

PreProcess SpaceNet Dataset

  • Convert SpaceNet 11-bit images to 8-bit Images.
  • Create road masks (3m), country wise.
  • Move all data to single folder.

SpaceNet dataset tree structure after preprocessing.

spacenet
|
└───gt
│   └───AOI_2_Vegas_img1.tif
└───images
│   └───RGB-PanSharpen_AOI_2_Vegas_img1.tif

Download DeepGlobe Road dataset in the following tree structure.

deepglobe
│
└───train
│   └───gt
│   └───images

Create Crops and connectivity cubes

python create_crops.py --base_dir ./data/spacenet/ --crop_size 650 --im_suffix .png --gt_suffix .png
python create_crops.py --base_dir ./data/deepglobe/train --crop_size 512 --im_suffix .png --gt_suffix .png
python create_connection.py --base_dir ./data/spacenet/crops 
python create_connection.py --base_dir ./data/deepglobe/train/crops 
spacenet
|   train.txt
|   val.txt
|   train_crops.txt   # created by create_crops.py
|   val_crops.txt     # created by create_crops.py
|
└───gt
│   
└───images
│   
└───crops       
│   └───connect_8_d1	# created by create_connection.py
│   └───connect_8_d3	# created by create_connection.py
│   └───gt		# created by create_crops.py
│   └───images	# created by create_crops.py

Testing

The pretrained model of CoANet can be downloaded:

Run the following scripts to evaluate the model.

  • SpaceNet
python test.py --ckpt='./run/spacenet/CoANet-resnet/CoANet-spacenet.pth.tar' --out_path='./run/spacenet/CoANet-resnet' --dataset='spacenet' --base_size=1280 --crop_size=1280 
  • DeepGlobe
python test.py --ckpt='./run/DeepGlobe/CoANet-resnet/CoANet-DeepGlobe.pth.tar' --out_path='./run/DeepGlobe/CoANet-resnet' --dataset='DeepGlobe' --base_size=1024 --crop_size=1024

Evaluate APLS

Training

Follow steps below to train your model:

  1. Configure your dataset path in [mypath.py].
  2. Input arguments: (see full input arguments via python train.py --help):
usage: train.py [-h] [--backbone resnet]
                [--out-stride OUT_STRIDE] [--dataset {spacenet,DeepGlobe}]
                [--workers N] [--base-size BASE_SIZE]
                [--crop-size CROP_SIZE] [--sync-bn SYNC_BN]
                [--freeze-bn FREEZE_BN] [--loss-type {ce,con_ce,focal}] [--epochs N]
                [--start_epoch N] [--batch-size N] [--test-batch-size N]
                [--use-balanced-weights] [--lr LR]
                [--lr-scheduler {poly,step,cos}] [--momentum M]
                [--weight-decay M] [--nesterov] [--no-cuda]
                [--gpu-ids GPU_IDS] [--seed S] [--resume RESUME]
                [--checkname CHECKNAME] [--ft] [--eval-interval EVAL_INTERVAL]
                [--no-val]
    
  1. To train CoANet using SpaceNet dataset and ResNet as backbone:
python train.py --dataset=spacenet

Contact

For any questions, please contact me via e-mail: [email protected].

Acknowledgment

This code is based on the pytorch-deeplab-xception codebase.

Owner
Jie Mei
PhD
Jie Mei
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023