A python library for implementing a recommender system

Overview

python-recsys

A python library for implementing a recommender system.

Installation

Dependencies

python-recsys is build on top of Divisi2, with csc-pysparse (Divisi2 also requires NumPy, and uses Networkx).

python-recsys also requires SciPy.

To install the dependencies do something like this (Ubuntu):

sudo apt-get install python-scipy python-numpy
sudo apt-get install python-pip
sudo pip install csc-pysparse networkx divisi2

# If you don't have pip installed then do:
# sudo easy_install csc-pysparse
# sudo easy_install networkx
# sudo easy_install divisi2

Download

Download python-recsys from github.

Install

tar xvfz python-recsys.tar.gz
cd python-recsys
sudo python setup.py install

Example

  1. Load Movielens dataset:
from recsys.algorithm.factorize import SVD
svd = SVD()
svd.load_data(filename='./data/movielens/ratings.dat',
            sep='::',
            format={'col':0, 'row':1, 'value':2, 'ids': int})
  1. Compute Singular Value Decomposition (SVD), M=U Sigma V^t:
k = 100
svd.compute(k=k,
            min_values=10,
            pre_normalize=None,
            mean_center=True,
            post_normalize=True,
            savefile='/tmp/movielens')
  1. Get similarity between two movies:
ITEMID1 = 1    # Toy Story (1995)
ITEMID2 = 2355 # A bug's life (1998)

svd.similarity(ITEMID1, ITEMID2)
# 0.67706936677315799
  1. Get movies similar to Toy Story:
svd.similar(ITEMID1)

# Returns: <ITEMID, Cosine Similarity Value>
[(1,    0.99999999999999978), # Toy Story
 (3114, 0.87060391051018071), # Toy Story 2
 (2355, 0.67706936677315799), # A bug's life
 (588,  0.5807351496754426),  # Aladdin
 (595,  0.46031829709743477), # Beauty and the Beast
 (1907, 0.44589398718134365), # Mulan
 (364,  0.42908159895574161), # The Lion King
 (2081, 0.42566581277820803), # The Little Mermaid
 (3396, 0.42474056361935913), # The Muppet Movie
 (2761, 0.40439361857585354)] # The Iron Giant
  1. Predict the rating a user (USERID) would give to a movie (ITEMID):
MIN_RATING = 0.0
MAX_RATING = 5.0
ITEMID = 1
USERID = 1

svd.predict(ITEMID, USERID, MIN_RATING, MAX_RATING)
# Predicted value 5.0

svd.get_matrix().value(ITEMID, USERID)
# Real value 5.0
  1. Recommend (non-rated) movies to a user:
svd.recommend(USERID, is_row=False) #cols are users and rows are items, thus we set is_row=False

# Returns: <ITEMID, Predicted Rating>
[(2905, 5.2133848204673416), # Shaggy D.A., The
 (318,  5.2052108435956033), # Shawshank Redemption, The
 (2019, 5.1037438278755474), # Seven Samurai (The Magnificent Seven)
 (1178, 5.0962756861447023), # Paths of Glory (1957)
 (904,  5.0771405690055724), # Rear Window (1954)
 (1250, 5.0744156653222436), # Bridge on the River Kwai, The
 (858,  5.0650911066862907), # Godfather, The
 (922,  5.0605327279819408), # Sunset Blvd.
 (1198, 5.0554543765500419), # Raiders of the Lost Ark
 (1148, 5.0548789542105332)] # Wrong Trousers, The
  1. Which users should see Toy Story? (e.g. which users -that have not rated Toy Story- would give it a high rating?)
svd.recommend(ITEMID)

# Returns: <USERID, Predicted Rating>
[(283,  5.716264440514446),
 (3604, 5.6471765418323141),
 (5056, 5.6218800339214496),
 (446,  5.5707524860615738),
 (3902, 5.5494529168484652),
 (4634, 5.51643364021289),
 (3324, 5.5138903299082802),
 (4801, 5.4947999354188548),
 (1131, 5.4941438045650068),
 (2339, 5.4916048051511659)]

Documentation

Documentation and examples available here.

To create the HTML documentation files from doc/source do:

cd doc
make html

HTML files are created here:

doc/build/html/index.html
Owner
Oscar Celma
I used to code. Now I barely remember how to do it
Oscar Celma
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023