Bayesian optimization in PyTorch

Related tags

Deep Learningbotorch
Overview
BoTorch Logo

Lint Test Docs Tutorials Codecov

Conda PyPI License

BoTorch is a library for Bayesian Optimization built on PyTorch.

BoTorch is currently in beta and under active development!

Why BoTorch ?

BoTorch

  • Provides a modular and easily extensible interface for composing Bayesian optimization primitives, including probabilistic models, acquisition functions, and optimizers.
  • Harnesses the power of PyTorch, including auto-differentiation, native support for highly parallelized modern hardware (e.g. GPUs) using device-agnostic code, and a dynamic computation graph.
  • Supports Monte Carlo-based acquisition functions via the reparameterization trick, which makes it straightforward to implement new ideas without having to impose restrictive assumptions about the underlying model.
  • Enables seamless integration with deep and/or convolutional architectures in PyTorch.
  • Has first-class support for state-of-the art probabilistic models in GPyTorch, including support for multi-task Gaussian Processes (GPs) deep kernel learning, deep GPs, and approximate inference.

Target Audience

The primary audience for hands-on use of BoTorch are researchers and sophisticated practitioners in Bayesian Optimization and AI. We recommend using BoTorch as a low-level API for implementing new algorithms for Ax. Ax has been designed to be an easy-to-use platform for end-users, which at the same time is flexible enough for Bayesian Optimization researchers to plug into for handling of feature transformations, (meta-)data management, storage, etc. We recommend that end-users who are not actively doing research on Bayesian Optimization simply use Ax.

Installation

Installation Requirements

  • Python >= 3.7
  • PyTorch >= 1.7.1
  • gpytorch >= 1.4
  • scipy
Installing the latest release

The latest release of BoTorch is easily installed either via Anaconda (recommended):

conda install botorch -c pytorch -c gpytorch

or via pip:

pip install botorch

You can customize your PyTorch installation (i.e. CUDA version, CPU only option) by following the PyTorch installation instructions.

Important note for MacOS users:

  • Make sure your PyTorch build is linked against MKL (the non-optimized version of BoTorch can be up to an order of magnitude slower in some settings). Setting this up manually on MacOS can be tricky - to ensure this works properly, please follow the PyTorch installation instructions.
  • If you need CUDA on MacOS, you will need to build PyTorch from source. Please consult the PyTorch installation instructions above.
Installing from latest master

If you would like to try our bleeding edge features (and don't mind potentially running into the occasional bug here or there), you can install the latest master directly from GitHub (this will also require installing the current GPyTorch master):

pip install --upgrade git+https://github.com/cornellius-gp/gpytorch.git
pip install --upgrade git+https://github.com/pytorch/botorch.git

Manual / Dev install

Alternatively, you can do a manual install. For a basic install, run:

git clone https://github.com/pytorch/botorch.git
cd botorch
pip install -e .

To customize the installation, you can also run the following variants of the above:

  • pip install -e .[dev]: Also installs all tools necessary for development (testing, linting, docs building; see Contributing below).
  • pip install -e .[tutorials]: Also installs all packages necessary for running the tutorial notebooks.

Getting Started

Here's a quick run down of the main components of a Bayesian optimization loop. For more details see our Documentation and the Tutorials.

  1. Fit a Gaussian Process model to data
import torch
from botorch.models import SingleTaskGP
from botorch.fit import fit_gpytorch_model
from gpytorch.mlls import ExactMarginalLogLikelihood

train_X = torch.rand(10, 2)
Y = 1 - (train_X - 0.5).norm(dim=-1, keepdim=True)  # explicit output dimension
Y += 0.1 * torch.rand_like(Y)
train_Y = (Y - Y.mean()) / Y.std()

gp = SingleTaskGP(train_X, train_Y)
mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
fit_gpytorch_model(mll)
  1. Construct an acquisition function
from botorch.acquisition import UpperConfidenceBound

UCB = UpperConfidenceBound(gp, beta=0.1)
  1. Optimize the acquisition function
from botorch.optim import optimize_acqf

bounds = torch.stack([torch.zeros(2), torch.ones(2)])
candidate, acq_value = optimize_acqf(
    UCB, bounds=bounds, q=1, num_restarts=5, raw_samples=20,
)

Citing BoTorch

If you use BoTorch, please cite the following paper:

M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. Advances in Neural Information Processing Systems 33, 2020.

@inproceedings{balandat2020botorch,
  title={{BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization}},
  author={Balandat, Maximilian and Karrer, Brian and Jiang, Daniel R. and Daulton, Samuel and Letham, Benjamin and Wilson, Andrew Gordon and Bakshy, Eytan},
  booktitle = {Advances in Neural Information Processing Systems 33},
  year={2020},
  url = {http://arxiv.org/abs/1910.06403}
}

See here for an incomplete selection of peer-reviewed papers that build off of BoTorch.

Contributing

See the CONTRIBUTING file for how to help out.

License

BoTorch is MIT licensed, as found in the LICENSE file.

Comments
  • Modifying Knowledge Gradient for time-dependent kernels

    Modifying Knowledge Gradient for time-dependent kernels

    Issue description

    I want to modify KG for time-dependent problems as follows. Given x in X (some compact space) and 0 <= t <= T, I have a GP model with prior GP(mu, k_xt), wherek_xt = k_x * k_t with k_x capturing covariance in 'x' space and k_t in 't' space. At time t I have data D_t = {(x_i, t_i), y_i }, i=1,...,n and t>t_n. I want to define KG as follows

    a_KG(x, t) = E_x'[max_x' mu(x', T) | {(x, t), y_i}]

    where y_i is sampled from GP(mu(x, t), k_xt) | D_t). In other words, my 'fantasy model' is at current time t however, my 'inner optimization' problem maximizes the posterior at T predicted via the fantasy model. Also my acquisition function a_KG is defined at t

    Question: How should I modify the qKnowledgeGradient class to achieve this, so I can take advantage of the efficient one-shot implementation of qKG? I have provided code for the GP I am using if you want to work with that.

    Any help is greatly appreciated! Please let me know if you need more information. Thanks!

    (apologies for trying to write equations in Markdown)

    import math
    import torch
    
    from botorch.fit import fit_gpytorch_model
    from botorch.models import SingleTaskGP
    from botorch.utils import standardize
    from gpytorch.mlls import ExactMarginalLogLikelihood
    
    import gpytorch                                      # main GP library
    from matplotlib import cm
    from matplotlib import pyplot as plt
    import numpy as np
    from botorch.fit import fit_gpytorch_model           # Wrapper for gpytorch to use in BO
    from botorch.models.gpytorch import GPyTorchModel
    
    def canned_dynamic_gp(train_x, train_y):
        '''
        fits a single-task GP for f(x,t) with a product kernel k_xt = k_x * k_t
    
        :param train_x:
        :param train_y:
        :return: gp object
        '''
    
        class ExactGPModel(gpytorch.models.ExactGP):
            num_outputs = 1  # to inform the BoTorch api
            def __init__(self, train_x, train_y, likelihood):
                super(ExactGPModel, self).__init__(train_x, train_y, likelihood)
                self.mean_module = gpytorch.means.ConstantMean()
                self.Rbfx_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
                self.Rbft_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
    
            def forward(self, x):
                X = x[:, :-1]
                t = x[:, -1]
                mean_x = self.mean_module(x)
                covar_x = self.Rbfx_module(X) * self.Rbft_module(t)
                return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
    
        # initialize likelihood and model
        likelihood = gpytorch.likelihoods.GaussianLikelihood()
        gp         = ExactGPModel(train_x, train_y, likelihood)
        mll        = ExactMarginalLogLikelihood(gp.likelihood, gp)
        gp.likelihood.noise_covar.raw_noise_constraint.upper_bound = 1e-3 # constraint on observation noise
        fit_gpytorch_model(mll);
    
        return gp
    
    # Synthetic time-dependent test function
    def quadratic(x, a=-4., s=0.5):
        y = a * np.sum(np.power(x - s, 2), axis=1)  # quadratic
        return y
    def f_xt_d(x, p, coeff=None, t=None):
        n, _ = np.shape(x)
        if t is None and x.shape[1] > p:
            t = x[:, -1]
            X = x[:, :-1]
        elif t is not None and x.shape[1] == p:
            X = x
        else:
            raise ValueError('x must have p+1 columns when t is None')
    
        if len(t) != n and len(t) != 1:
            raise ValueError('t should be of length 1 or n')
    
        if coeff is None:
            coeff = np.array([1., 1.])
    
        phi_xt = np.vstack((2 * np.sum(np.multiply(X, np.atleast_2d(np.sin(t)).T ), axis=1),
                            -np.power(np.atleast_2d(np.sin(t)), 2)
                            ))
        f_xt = np.matmul(np.atleast_2d(phi_xt).T, coeff)
        return f_xt
    
    training_size = 100
    p  = 1  # x-dimensions
    lb = 0. # x lower bound
    ub= 1. # x upper bound
    T  = 4. # t upper bound
    
    bounds  = torch.stack([torch.zeros(2), torch.tensor([1,T])])
    fxt_func= f_xt_d
    
    t          = np.linspace(0, 3.9, training_size)
    train_x = lb + (ub-lb) * np.random.uniform(size=[training_size, p])
    train_x = np.hstack((train_x, np.atleast_2d(t).T))
    train_y = quadratic(np.atleast_2d(train_x[:,0]).T) + fxt_func(train_x, p,)
    
    # convert everything to Torch
    train_x = torch.tensor(train_x, dtype=torch.float32)
    train_y = torch.tensor(train_y, dtype=torch.float32)
    
    # GP model
    gp = canned_dynamic_gp(train_x, train_y)
    

    System Info

    Please provide information about your setup, including

    • BoTorch Version 0.3.1
    • GPyTorch Version 1.2.0
    • PyTorch Version 1.6.0
    • Windows and Linux
    opened by r-ashwin 37
  • Numerical issue with cholesky decomposition (even with normalization)

    Numerical issue with cholesky decomposition (even with normalization)

    Issue description

    I am consistently running into numerical issues when running fit_gpytorch_model(). I am normalizing the inputs and standardizing the outputs (as described in issue 160)

    Code example

    fit_gpytorch_model(mll)
    EI = ExpectedImprovement(gp, best_f=0.1)
    
    ## optimize acquisition function
    candidates = joint_optimize(
        acq_function=EI,
        q = 1, 
        bounds = bounds,
        num_restarts=10,
        raw_samples=500,  # used for intialization heuristic
    )
    
    new_x = candidates.detach()
    exact_obj = neg_eggholder(new_x)
    
    train_x_ei = torch.cat([train_x_ei, candidates])
    train_y_ei = torch.cat([train_y_ei, exact_obj])
    
    gp = SingleTaskGP(
        normalize(train_x_ei, bounds=bounds), 
        standardize(train_y_ei)
        )
    mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
    

    Here is the error message:

    RuntimeError Traceback (most recent call last) in 2 3 ----> 4 fit_gpytorch_model(mll) 5 EI = ExpectedImprovement(gp, best_f=0.1) 6

    C:\Anaconda3\envs\py36_new\lib\site-packages\botorch\fit.py in fit_gpytorch_model(mll, optimizer, **kwargs) 33 """ 34 mll.train() ---> 35 mll, _ = optimizer(mll, track_iterations=False, **kwargs) 36 mll.eval() 37 return mll

    C:\Anaconda3\envs\py36_new\lib\site-packages\botorch\optim\fit.py in fit_gpytorch_scipy(mll, bounds, method, options, track_iterations) 186 jac=True, 187 options=options, --> 188 callback=cb, 189 ) 190 iterations = []

    C:\Anaconda3\envs\py36_new\lib\site-packages\scipy\optimize_minimize.py in minimize(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options) 599 elif meth == 'l-bfgs-b': 600 return _minimize_lbfgsb(fun, x0, args, jac, bounds, --> 601 callback=callback, **options) 602 elif meth == 'tnc': 603 return _minimize_tnc(fun, x0, args, jac, bounds, callback=callback,

    C:\Anaconda3\envs\py36_new\lib\site-packages\scipy\optimize\lbfgsb.py in _minimize_lbfgsb(fun, x0, args, jac, bounds, disp, maxcor, ftol, gtol, eps, maxfun, maxiter, iprint, callback, maxls, **unknown_options) 333 # until the completion of the current minimization iteration. 334 # Overwrite f and g: --> 335 f, g = func_and_grad(x) 336 elif task_str.startswith(b'NEW_X'): 337 # new iteration

    C:\Anaconda3\envs\py36_new\lib\site-packages\scipy\optimize\lbfgsb.py in func_and_grad(x) 283 else: 284 def func_and_grad(x): --> 285 f = fun(x, *args) 286 g = jac(x, *args) 287 return f, g

    C:\Anaconda3\envs\py36_new\lib\site-packages\scipy\optimize\optimize.py in function_wrapper(*wrapper_args) 298 def function_wrapper(wrapper_args): 299 ncalls[0] += 1 --> 300 return function((wrapper_args + args)) 301 302 return ncalls, function_wrapper

    C:\Anaconda3\envs\py36_new\lib\site-packages\scipy\optimize\optimize.py in call(self, x, *args) 61 def call(self, x, *args): 62 self.x = numpy.asarray(x).copy() ---> 63 fg = self.fun(x, *args) 64 self.jac = fg[1] 65 return fg[0]

    C:\Anaconda3\envs\py36_new\lib\site-packages\botorch\optim\fit.py in _scipy_objective_and_grad(x, mll, property_dict) 221 output = mll.model(*train_inputs) 222 args = [output, train_targets] + _get_extra_mll_args(mll) --> 223 loss = -mll(*args).sum() 224 loss.backward() 225 param_dict = OrderedDict(mll.named_parameters())

    C:\Anaconda3\envs\py36_new\lib\site-packages\gpytorch\module.py in call(self, *inputs, **kwargs) 20 21 def call(self, *inputs, **kwargs): ---> 22 outputs = self.forward(*inputs, **kwargs) 23 if isinstance(outputs, list): 24 return [_validate_module_outputs(output) for output in outputs]

    C:\Anaconda3\envs\py36_new\lib\site-packages\gpytorch\mlls\exact_marginal_log_likelihood.py in forward(self, output, target, *params) 26 # Get the log prob of the marginal distribution 27 output = self.likelihood(output, *params) ---> 28 res = output.log_prob(target) 29 30 # Add terms for SGPR / when inducing points are learned

    C:\Anaconda3\envs\py36_new\lib\site-packages\gpytorch\distributions\multivariate_normal.py in log_prob(self, value) 127 128 # Get log determininat and first part of quadratic form --> 129 inv_quad, logdet = covar.inv_quad_logdet(inv_quad_rhs=diff.unsqueeze(-1), logdet=True) 130 131 res = -0.5 * sum([inv_quad, logdet, diff.size(-1) * math.log(2 * math.pi)])

    C:\Anaconda3\envs\py36_new\lib\site-packages\gpytorch\lazy\lazy_tensor.py in inv_quad_logdet(self, inv_quad_rhs, logdet, reduce_inv_quad) 990 from .chol_lazy_tensor import CholLazyTensor 991 --> 992 cholesky = CholLazyTensor(self.cholesky()) 993 return cholesky.inv_quad_logdet(inv_quad_rhs=inv_quad_rhs, logdet=logdet, reduce_inv_quad=reduce_inv_quad) 994

    C:\Anaconda3\envs\py36_new\lib\site-packages\gpytorch\lazy\lazy_tensor.py in cholesky(self, upper) 716 (LazyTensor) Cholesky factor (lower triangular) 717 """ --> 718 res = self._cholesky() 719 if upper: 720 res = res.transpose(-1, -2)

    C:\Anaconda3\envs\py36_new\lib\site-packages\gpytorch\utils\memoize.py in g(self, *args, **kwargs) 32 cache_name = name if name is not None else method 33 if not is_in_cache(self, cache_name): ---> 34 add_to_cache(self, cache_name, method(self, *args, **kwargs)) 35 return get_from_cache(self, cache_name) 36

    C:\Anaconda3\envs\py36_new\lib\site-packages\gpytorch\lazy\lazy_tensor.py in _cholesky(self) 401 evaluated_mat.register_hook(_ensure_symmetric_grad) 402 --> 403 cholesky = psd_safe_cholesky(evaluated_mat.double()).to(self.dtype) 404 return NonLazyTensor(cholesky) 405

    C:\Anaconda3\envs\py36_new\lib\site-packages\gpytorch\utils\cholesky.py in psd_safe_cholesky(A, upper, out, jitter) 45 continue 46 ---> 47 raise e 48 49

    C:\Anaconda3\envs\py36_new\lib\site-packages\gpytorch\utils\cholesky.py in psd_safe_cholesky(A, upper, out, jitter) 19 """ 20 try: ---> 21 L = torch.cholesky(A, upper=upper, out=out) 22 # TODO: Remove once fixed in pytorch (#16780) 23 if A.dim() > 2 and A.is_cuda:

    RuntimeError: cholesky_cpu: U(2,2) is zero, singular U.

    System Info

    BoTorch 0.1.0 GPyTorch 0.3.2 Torch 1.1.0 Windows 10

    opened by michaelyli 36
  • Setting up a custom GPyTorch model for BoTorch

    Setting up a custom GPyTorch model for BoTorch

    If you are submitting a bug report or feature request, please use the respective issue template.

    Issue description

    I am trying to use the MultiTaskGP model from GPyTorch with the BoTorch's qMaxValueEntropy. I get the UnsupportedError because the objective kwarg is not supported. See error below

    `---------------------------------------------------------------------------

    UnsupportedError                          Traceback (most recent call last)
    <ipython-input-9-e910224785b8> in <module>
        223 candidate_set = torch.rand(size=[1000, 1]) # MES requires a candidate set
        224 from botorch.acquisition.objective import ScalarizedObjective
    --> 225 qSMES = qScalarizedMES(model, candidate_set=candidate_set, weights=torch.tensor([1.,0.]))
    
    <ipython-input-9-e910224785b8> in __init__(self, model, candidate_set, weights, num_fantasies, num_mv_samples, num_y_samples, use_gumbel, maximize, X_pending)
         65         """
         66         sampler = SobolQMCNormalSampler(num_y_samples)
    ---> 67         super().__init__(model=model, sampler=sampler)
         68 
         69         # Batch GP models (e.g. fantasized models) are not currently supported
    
    ~\Anaconda3\lib\site-packages\botorch\acquisition\monte_carlo.py in __init__(self, model, sampler, objective, X_pending)
         69             if model.num_outputs != 1:
         70                 raise UnsupportedError(
    ---> 71                     "Must specify an objective when using a multi-output model."
         72                 )
         73             objective = IdentityMCObjective()
    
    UnsupportedError: Must specify an objective when using a multi-output model.`
    
    ## Code example
    See code below to reproduce error
    

    import torch
    import gpytorch
    import math
    from matplotlib import cm
    from matplotlib import pyplot as plt
    import numpy as np
    from botorch.models import MultiTaskGP
    
    def test_1d(X):
        a = 16
        f = 1*X**2 + torch.sin(a*X)
        dfx = 1*2*X + a * torch.cos(a*X)
        return f, dfx
    x = torch.linspace(0.15, .65, 5)
    f, dfx = test_1d(x)
    train_x = x.unsqueeze(-1)
    train_y = torch.stack((f, dfx),dim=1)
    print(train_x.size())
    plt.plot(x.numpy(), f.numpy())
    plt.plot(x.numpy(), dfx.numpy(), ls='--', c='gray')
    
    
    from botorch.posteriors import GPyTorchPosterior
    from gpytorch.distributions import MultitaskMultivariateNormal
    from botorch.models.gpytorch import GPyTorchModel
    from gpytorch.likelihoods import MultitaskGaussianLikelihood
    
    class GPModelWithDerivatives(gpytorch.models.ExactGP, GPyTorchModel):
        num_outputs = 2  # to inform GPyTorchModel API (only to interface with BoTorch)
        def __init__(self, train_x, train_y, likelihood):
            super().__init__(train_x, train_y, likelihood)
            self.mean_module = gpytorch.means.ConstantMeanGrad()
            self.base_kernel = gpytorch.kernels.RBFKernelGrad(ard_num_dims=1)
            self.covar_module = gpytorch.kernels.ScaleKernel(self.base_kernel)
    
        def forward(self, x):
            mean_x = self.mean_module(x)
            covar_x = self.covar_module(x)
            return gpytorch.distributions.MultitaskMultivariateNormal(mean_x, covar_x)
        
    likelihood = MultitaskGaussianLikelihood(num_tasks=2)  # Value + x-derivative + y-derivative
    model = GPModelWithDerivatives(train_x, train_y, likelihood)
    
    # this is for running the notebook in our testing framework
    import os
    smoke_test = ('CI' in os.environ)
    training_iter = 2 if smoke_test else 500
    
    
    # Find optimal model hyperparameters
    model.train()
    likelihood.train()
    
    # Use the adam optimizer
    optimizer = torch.optim.Adam([
        {'params': model.parameters()},  # Includes GaussianLikelihood parameters
    ], lr=0.05)
    
    # "Loss" for GPs - the marginal log likelihood
    # likelihood.noise_covar.raw_noise_constraint.upper_bound = torch.tensor([1e-6, 1e-6])
    likelihood.noise_covar.register_constraint("raw_noise", gpytorch.constraints.LessThan(1e-4) )
    likelihood.noise_covar.register_constraint("raw_noise", gpytorch.constraints.GreaterThan(1e-8) )
    mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model)
    
    for i in range(training_iter):
        optimizer.zero_grad()
        output = model(train_x)
        loss = -mll(output, train_y)
    #     print(loss.item())
        loss.backward()
    #     print("Iter %d/%d - Loss: %.3f   lengthscales: %.3f noise: %.8f" % (
    #         i + 1, training_iter, loss.item(),
    #         model.covar_module.base_kernel.lengthscale.squeeze().item(),
    #         model.likelihood.noise.squeeze().item()
    #     ))
        optimizer.step()
    print(model.likelihood.noise.squeeze())
    
    from botorch.acquisition import MCAcquisitionFunction
    from botorch.acquisition.max_value_entropy_search import qMaxValueEntropy
    from botorch.acquisition.objective import ScalarizedObjective
    
    # Scalarized MES
    import math
    
    from torch import Tensor
    from typing import Optional
    
    from botorch.acquisition import MCAcquisitionObjective
    from botorch.acquisition.acquisition import AcquisitionFunction
    from botorch.acquisition.monte_carlo import MCAcquisitionFunction
    from botorch.models.model import Model
    from botorch.sampling.samplers import MCSampler, SobolQMCNormalSampler
    # from botorch.utils import match_batch_shape, t_batch_mode_transform
    from botorch.utils.transforms import match_batch_shape, t_batch_mode_transform
    
    from botorch.models.utils import check_no_nans
    from botorch.exceptions import UnsupportedError
    CLAMP_LB = 1.0e-8
    
    class qScalarizedMES(MCAcquisitionFunction):
        r"""The acquisition function for Max-value Entropy Search.
    
        This acquisition function computes the mutual information of
        max values and a candidate point X. See [Wang2018mves]_ for
        a detailed discussion.
    
        The model must be single-outcome.
        q > 1 is supported through cyclic optimization and fantasies.
    
        Example:
            >>> model = SingleTaskGP(train_X, train_Y)
            >>> candidate_set = torch.rand(1000, bounds.size(1))
            >>> candidate_set = bounds[0] + (bounds[1] - bounds[0]) * candidate_set
            >>> MES = qMaxValueEntropy(model, candidate_set)
            >>> mes = MES(test_X)
        """
    
        def __init__(
            self,
            model: Model,
            candidate_set: Tensor,
            weights: Tensor,
            num_fantasies: int = 16,
            num_mv_samples: int = 10,
            num_y_samples: int = 128,
            use_gumbel: bool = True,
            maximize: bool = True,
            X_pending: Optional[Tensor] = None,
        ) -> None:
            r"""Single-outcome max-value entropy search acquisition function.
    
            Args:
                model: A fitted single-outcome model.
                candidate_set: A `n x d` Tensor including `n` candidate points to
                    discretize the design space. Max values are sampled from the
                    (joint) model posterior over these points.
                num_fantasies: Number of fantasies to generate. The higher this
                    number the more accurate the model (at the expense of model
                    complexity, wall time and memory). Ignored if `X_pending` is `None`.
                num_mv_samples: Number of max value samples.
                num_y_samples: Number of posterior samples at specific design point `X`.
                use_gumbel: If True, use Gumbel approximation to sample the max values.
                X_pending: A `m x d`-dim Tensor of `m` design points that have been
                    submitted for function evaluation but have not yet been evaluated.
                maximize: If True, consider the problem a maximization problem.
            """
            sampler = SobolQMCNormalSampler(num_y_samples)
            super().__init__(model=model, sampler=sampler)
    
            # Batch GP models (e.g. fantasized models) are not currently supported
            if self.model.train_inputs[0].ndim > 2:
                raise NotImplementedError(
                    "Batch GP models (e.g. fantasized models) "
                    "are not yet supported by qMaxValueEntropy"
                )
    
            self._init_model = model  # only used for the `fantasize()` in `set_X_pending()`
            train_inputs = match_batch_shape(model.train_inputs[0], candidate_set)
            self.candidate_set = torch.cat([candidate_set, train_inputs], dim=0)
            self.fantasies_sampler = SobolQMCNormalSampler(num_fantasies)
            self.num_fantasies = num_fantasies
            self.use_gumbel = use_gumbel
            self.num_mv_samples = num_mv_samples
            self.maximize = maximize
            self.weight = 1.0 if maximize else -1.0
            
            self.register_buffer("weights", torch.as_tensor(weights))
    
        @t_batch_mode_transform(expected_q=1)
        def forward(self, X: Tensor) -> Tensor:
            r"""Compute max-value entropy at the design points `X`.
    
            Args:
                X: A `batch_shape x 1 x d`-dim Tensor of `batch_shape` t-batches
                    with `1` `d`-dim design points each.
    
            Returns:
                A `batch_shape`-dim Tensor of MVE values at the given design points `X`.
            """
            # Compute the posterior, posterior mean, variance and std
            posterior = self.model.posterior(X.unsqueeze(-3), observation_noise=False)
            mean = self.weight * posterior.mean.squeeze(-1).squeeze(-1)
            # batch_shape x num_fantasies
            variance = posterior.variance.clamp_min(CLAMP_LB).view_as(mean)
            check_no_nans(mean)
            check_no_nans(variance)
            
            posterior = self.model.posterior(X)
            samples = self.sampler(posterior)  # n x b x q x o
            scalarized_samples = samples.matmul(self.weights)  # n x b x q
    #         mean = posterior.mean  # b x q x o
            scalarized_mean = mean.matmul(self.weights)  # b x q
                
            ig = self._compute_information_gain(
                X=X, mean_M=scalarized_mean, variance_M=variance, covar_mM=variance.unsqueeze(-1)
            )
    
            return ig.mean(dim=0)  # average over the fantasies
        
        def _compute_information_gain(
            self, X: Tensor, mean_M: Tensor, variance_M: Tensor, covar_mM: Tensor
        ) -> Tensor:
            r"""Computes the information gain at the design points `X`.
    
            Approximately computes the information gain at the design points `X`,
            for both MES with noisy observations and multi-fidelity MES with noisy
            observation and trace observations.
    
            The implementation is inspired from the paper on multi-fidelity MES by
            Takeno et. al. [Takeno2019mfmves]_. The notations in the comments in this
            function follows the Appendix A in the paper.
    
            Args:
                X: A `batch_shape x 1 x d`-dim Tensor of `batch_shape` t-batches
                    with `1` `d`-dim design point each.
                mean_M, variance_M: `batch_shape x num_fantasies`-dim Tensors of
                    `batch_shape` t-batches with `num_fantasies` fantasies.
                    `num_fantasies = 1` for non-fantasized models.
                    All are obtained without noise.
                covar_mM: `batch_shape x num_fantasies x (1 + num_trace_observations)`
                    -dim Tensor. `num_fantasies = 1` for non-fantasized models.
                    All are obtained without noise.
    
            Returns:
                A `num_fantasies x batch_shape`-dim Tensor of information gains at the
                given design points `X`.
            """
    
            # compute the std_m, variance_m with noisy observation
            posterior_m = self.model.posterior(X.unsqueeze(-3), observation_noise=True)
            mean_m = self.weight * posterior_m.mean.squeeze(-1)
            # batch_shape x num_fantasies x (1 + num_trace_observations)
            variance_m = posterior_m.mvn.covariance_matrix
            # batch_shape x num_fantasies x (1 + num_trace_observations)^2
            check_no_nans(variance_m)
    
            # compute mean and std for fM|ym, x, Dt ~ N(u, s^2)
            samples_m = self.weight * self.sampler(posterior_m).squeeze(-1)
            # s_m x batch_shape x num_fantasies x (1 + num_trace_observations)
            L = torch.cholesky(variance_m)
            temp_term = torch.cholesky_solve(covar_mM.unsqueeze(-1), L).transpose(-2, -1)
            # equivalent to torch.matmul(covar_mM.unsqueeze(-2), torch.inverse(variance_m))
            # batch_shape x num_fantasies x 1 x (1 + num_trace_observations)
    
            mean_pt1 = torch.matmul(temp_term, (samples_m - mean_m).unsqueeze(-1))
            mean_new = mean_pt1.squeeze(-1).squeeze(-1) + mean_M
            # s_m x batch_shape x num_fantasies
            variance_pt1 = torch.matmul(temp_term, covar_mM.unsqueeze(-1))
            variance_new = variance_M - variance_pt1.squeeze(-1).squeeze(-1)
            # batch_shape x num_fantasies
            stdv_new = variance_new.clamp_min(CLAMP_LB).sqrt()
            # batch_shape x num_fantasies
    
            # define normal distribution to compute cdf and pdf
            normal = torch.distributions.Normal(
                torch.zeros(1, device=X.device, dtype=X.dtype),
                torch.ones(1, device=X.device, dtype=X.dtype),
            )
    
            # Compute p(fM <= f* | ym, x, Dt)
            view_shape = (
                [self.num_mv_samples] + [1] * (len(X.shape) - 2) + [self.num_fantasies]
            )  # s_M x batch_shape x num_fantasies
            if self.X_pending is None:
                view_shape[-1] = 1
            max_vals = self.posterior_max_values.view(view_shape).unsqueeze(1)
            # s_M x 1 x batch_shape x num_fantasies
            normalized_mvs_new = (max_vals - mean_new) / stdv_new
            # s_M x s_m x batch_shape x num_fantasies =
            # s_M x 1 x batch_shape x num_fantasies - s_m x batch_shape x num_fantasies
            cdf_mvs_new = normal.cdf(normalized_mvs_new).clamp_min(CLAMP_LB)
    
            # Compute p(fM <= f* | x, Dt)
            stdv_M = variance_M.sqrt()
            normalized_mvs = (max_vals - mean_M) / stdv_M
            # s_M x 1 x batch_shape x num_fantasies =
            # s_M x 1 x 1 x num_fantasies - batch_shape x num_fantasies
            cdf_mvs = normal.cdf(normalized_mvs).clamp_min(CLAMP_LB)
            # s_M x 1 x batch_shape x num_fantasies
    
            # Compute log(p(ym | x, Dt))
            log_pdf_fm = posterior_m.mvn.log_prob(self.weight * samples_m).unsqueeze(0)
            # 1 x s_m x batch_shape x num_fantasies
    
            # H0 = H(ym | x, Dt)
            H0 = posterior_m.mvn.entropy()  # batch_shape x num_fantasies
    
            # regression adjusted H1 estimation, H1_hat = H1_bar - beta * (H0_bar - H0)
            # H1 = E_{f*|x, Dt}[H(ym|f*, x, Dt)]
            Z = cdf_mvs_new / cdf_mvs  # s_M x s_m x batch_shape x num_fantasies
            h1 = -Z * Z.log() - Z * log_pdf_fm  # s_M x s_m x batch_shape x num_fantasies
            check_no_nans(h1)
            dim = [0, 1]  # dimension of fm samples, fM samples
            H1_bar = h1.mean(dim=dim)
            h0 = -log_pdf_fm
            H0_bar = h0.mean(dim=dim)
            cov = ((h1 - H1_bar) * (h0 - H0_bar)).mean(dim=dim)
            beta = cov / (h0.var(dim=dim) * h1.var(dim=dim)).sqrt()
            H1_hat = H1_bar - beta * (H0_bar - H0)
            ig = H0 - H1_hat  # batch_shape x num_fantasies
            ig = ig.permute(-1, *range(ig.dim() - 1))  # num_fantasies x batch_shape
            return ig
        
    candidate_set = torch.rand(size=[1000, 1]) # MES requires a candidate set
    from botorch.acquisition.objective import ScalarizedObjective
    qSMES = qScalarizedMES(model, candidate_set=candidate_set, weights=torch.tensor([1.,0.]))
    

    `

    System Info

    Please provide information about your setup, including

    • BoTorch Version 0.2.5
    • GPyTorch Version 1.1.1
    • PyTorch Version 1.5.0+cpu
    • Computer OS windows
    opened by r-ashwin 28
  • Improving test coverage of UnifiedSkewNormal code

    Improving test coverage of UnifiedSkewNormal code

    Summary: This commit improves the test coverage of the code located in botorch/utils/probability. For the current coverage without this commit, see here.

    Differential Revision: D39556258

    CLA Signed fb-exported 
    opened by SebastianAment 23
  • Adding proximal acquisition function wrapper

    Adding proximal acquisition function wrapper

    Motivation

    The goal of this acquisition function is to bias a GP optimization towards smooth optimization through the input domain. The proximal AF multiplies the base acquisition function by a squared exponential with a user defined lengthscale, centered at the most recently observed training point (assumed to be model.train_inputs[-1]). If the associated lengthscale is short the algorithm makes small jumps in input space, if it is long it is not strongly biased. This method differs from simply restricting the max travel size in input space by allowing large travel distances if the predicted value is large enough. See https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.062801 for discussion and analysis.

    This becomes relevant when using Bayesian optimization techniques on optimizing physical systems, where there is a cost associated with changing input parameters.

    Have you read the Contributing Guidelines on pull requests?

    Yes, I've tried my best to satisfy all requirements although there are possibly errors (first time contributing to a major project like this).

    Test Plan

    Test script test_proximal.py has been added to test/acquisition. I can also provide numerical proof that this works with a simple script but I was unsure where to include. Result is show below figure_1

    Please comment if I need to change anything, thanks!

    Related PRs

    None

    CLA Signed Merged 
    opened by roussel-ryan 23
  • Add entropy search acquisition functions

    Add entropy search acquisition functions

    Hi,

    I have provided some implementations of entropy search acquisition functions used in a recent paper (https://arxiv.org/abs/2210.02905). This PR includes the acquisition function and the necessary utilities. I have included a notebook that describes how to use these methods.

    I was not sure what were the best places to add these acquisition functions, so I put them all in the multi-objective folder. Nevertheless, they should work for single-objective optimization as well.

    Thanks, Ben

    CLA Signed 
    opened by benmltu 21
  • Botorch closures

    Botorch closures

    Summary: Changelog:

    • Enable user-defined loss closures.
    • fit_gptorch_torch rewrite
    • Add fit_gyptorch_mll dispatch for ApproximateGPs

    Differential Revision: D39101211

    CLA Signed fb-exported 
    opened by j-wilson 19
  • Support specifying observation noise explicitly

    Support specifying observation noise explicitly

    This adds support for specifying the observation noise in posterior and fantasize.

    In addition to using the observation noise from the likelihood by setting observation_noise=True, now observation_noise can be a tensor. In that case, the provided noise levels are used directly as the observation noise in the posterior predictive (not in performing inference).

    The primary use case for this is if we have auxiliary noise models that should not be used as the likelihood during posterior computations (e.g. b/c the model is fitted to already smoothed data), or because we have some dependency of the observation noise on parameters that we may control, e.g. the fidelity of the evaluation/sample size.

    Note: This depends on https://github.com/cornellius-gp/gpytorch/pull/865

    Also, this cleans up some of the boilerplate code in the gpytorch wrappers by defining the gpt_posterior_settings contextmanager that wraps the settings we use for posterior computation.

    CLA Signed Merged 
    opened by Balandat 19
  • Optimizing over discrete parameter domains

    Optimizing over discrete parameter domains

    Can BoTorch be used over discrete parameter domains? (if so, than this is a feature inquiry, and not a feature "request")

    We have a use case of domains which are partly continuous, partly discrete, like: [{"name": "param1", "type": "continuous", "domain": [-5, 10]}, {"name": "param2", "type": "continuous", "domain": [1, 15]}, {"name": "param3", "type": "discrete", "domain": [1, 1.5, 2, 2.5, 3, 3.5, 4]}]

    The functions under "botorch/optim/optimize.py" accept an argument called "bounds", which you define as : "bounds: A 2 x d tensor of lower and upper bounds for each column of X".

    These are obviously bounds for a continuous search space. Can BoTorch be used for searching over discrete spaces?

    Thank you so much for the package! Avi

    enhancement 
    opened by avimit 19
  • low-rank cholesky updates for NEI

    low-rank cholesky updates for NEI

    Summary: This uses low-rank cholesky updates in NEI. Using SAA this allows us to cache the objectives values for the in-sample points and only compute the objectives for the new test points. This is much faster when there are lots of baseline points.

    However, this makes the acquisition function harder to read, so I am curious to hear what folks think.

    Moreover, this is a prototype that I am using for research, but many common components with NEHVI should be refactored into a shared utility or base class.

    Differential Revision: D32668278

    CLA Signed fb-exported 
    opened by sdaulton 17
  • [Bug] Possible memory leak in `botorch.optim.optimize_acqf`

    [Bug] Possible memory leak in `botorch.optim.optimize_acqf`

    🐛 Bug

    As far as I can tell botorch.optim.optimize_acqf leaves a tiny bit of memory behind somewhere. It seems worse for q-batched acquisition functions (at least, for qUCB and qEI) than analytic ones, and worse on ubuntu than OSX. Calls to fit_gpytorch_model and the acqf itself seem fine.

    To reproduce

    Sorry this is a bit long.

    import torch
    import numpy as np
    import gpytorch
    from botorch.models.gpytorch import GPyTorchModel
    from botorch.fit import fit_gpytorch_model
    from botorch.optim import optimize_acqf
    from botorch.acquisition import (
        qUpperConfidenceBound,
        ExpectedImprovement,
        qExpectedImprovement,
    )
    
    from gpytorch.models import ApproximateGP
    from gpytorch.variational import MeanFieldVariationalDistribution, VariationalStrategy
    
    from tqdm import trange
    
    # Haven't checked if this happens with non-variational GPs yet
    class GPClassificationModel(ApproximateGP, GPyTorchModel):
    
        _num_outputs = 1
    
        def __init__(
            self, inducing_min, inducing_max, inducing_size=10,
        ):
    
            inducing_points = torch.linspace(
                inducing_min[0], inducing_max[0], inducing_size
            )
    
            variational_distribution = MeanFieldVariationalDistribution(
                inducing_points.size(0)
            )
            variational_strategy = VariationalStrategy(
                self,
                inducing_points,
                variational_distribution,
                learn_inducing_locations=False,
            )
            super(GPClassificationModel, self).__init__(variational_strategy)
            self.mean_module = gpytorch.means.ConstantMean()
            self.covar_module = gpytorch.kernels.ScaleKernel(
                gpytorch.kernels.RBFKernel(ard_num_dims=1),
            )
    
        def forward(self, x):
            mean_x = self.mean_module(x)
            covar_x = self.covar_module(x)
            latent_pred = gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
            return latent_pred
    
        def set_train_data(self, x, y):
            self.train_inputs = (x,)
            self.train_targets = y
    
    
    bounds = torch.Tensor(np.r_[-1, 1])[:, None]
    ntrials = 1000
    restarts = 10
    samps = 1000
    q = 1
    n = 10
    
    # initialize
    likelihood = gpytorch.likelihoods.BernoulliLikelihood()
    model = GPClassificationModel(inducing_min=bounds[0], inducing_max=bounds[1])
    
    acq = qUpperConfidenceBound(model=model, beta=3.98)
    
    mll = gpytorch.mlls.VariationalELBO(likelihood, model, n)
    x = torch.rand(size=(n,))
    y = torch.randint_like(x, 0, 2, dtype=torch.long)
    model.set_train_data(x, y)
    model.train()
    
    # just call something in a tight loop to see if memory grows
    for i in trange(ntrials):
        # this call keeps memory steady
        # fit_gpytorch_model(mll)
    
        # this call keeps memory steady
        # _ = acq(x[:, None])
    
        # this call grows memory by a little bit every call
        new_x, batch_acq_values = optimize_acqf(
            acq_function=acq, bounds=bounds, q=q, num_restarts=restarts, raw_samples=samps,
        )
    

    Running the above with mprof, here's what no leak looks like: No leak

    Here's what a leak on OSX looks like: OSX leak

    Here's what a leak on ubuntu looks like: ubuntu leak

    Expected Behavior

    Expecting no memory leak here -- I'm trying to run some benchmarks, which means that I run many synthetic opt runs and anything long-running gets killed.

    System information

    • botorch version: 0.3.3
    • gpytorch version: 1.3.0
    • pytorch version: 1.7.1
    • OS: OSX (mild apparent leak), ubuntu (worse apparent leak).
    bug upstream issue 
    opened by mshvartsman 17
  • Fix tensor shapes in unit tests

    Fix tensor shapes in unit tests

    Summary: As a result of switching from self.AssertTrue(torch.allclose(...)) to self.AssertAllClose in unit tests, we will now also have checks that tensors compared are the same shape and not just numerically equal. Some of our current tests were failing; this fixes that by changing the shapes of the compared tensors.

    Differential Revision: D42402387

    CLA Signed fb-exported 
    opened by esantorella 2
  • Loosen tolerances to stop `TestNoisyExpectedImprovement.test_noisy_expected_improvement` from being flaky

    Loosen tolerances to stop `TestNoisyExpectedImprovement.test_noisy_expected_improvement` from being flaky

    Summary: This failed in the GH CI twice this week, for example here: https://github.com/pytorch/botorch/actions/runs/3861688944/jobs/6582809874

    Differential Revision: D42402143

    CLA Signed fb-exported 
    opened by esantorella 4
  • Add BotorchTestCase.assertAllClose

    Add BotorchTestCase.assertAllClose

    Summary: BotorchTestCase.assertAllClose will print more informative error messages on failure than TestCase.assertTrue(torch.allclose(...)). It uses torch.testing.assert_close.

    Old test output: AssertionError: False is not true

    New test output:

    1) AssertionError: Scalars are not close!
    
    Absolute difference: 1.0000034868717194 (up to 0.0001 allowed)
    Relative difference: 0.8348668001940709 (up to 1e-05 allowed)
    

    This currently replicates the behavior of torch.allclose so that tests remain exactly as strict as they used to be, but in the future we might want to use the behavior of assert_close instead since it uses higher tolerances for single-precision inputs by default and is more configurable.

    Differential Revision: D42402142

    CLA Signed fb-exported 
    opened by esantorella 3
  • Normalization for chebychev correct?

    Normalization for chebychev correct?

    Hi, I would like to make sure that the objective values get normalized to the correct interval in the get_chebyvhev_scalarization function. Right now values get normalized to [0,1] for maximization. However, this results in every weight vector having a component of zero scalarizing every objective vector to zero since min(0,...)=0 if every element>=0. Also, for minimization the literature suggests normalizing to [0,1] instead of [-1,0]. Is this intended behavior or should the normalization interval maybe be flipped?

    opened by peteole 9
  • ModelList in combination with qNoisyExpectedImprovement fails

    ModelList in combination with qNoisyExpectedImprovement fails

    Issue description

    When I tried to use a ModelList in combination with qNoisyExpectedImprovement, I got an error regarding the missing attribute distribution of the object PosteriorList. Is this error intended? Because that means that it is currently not possible to use qNoisyExpectedImprovement on problems where for example the output constraint is defined by a deterministic model and the actual objective by a SingleTaskGP.

    Code example

    This is the MWE:

    import torch
    from botorch.models import SingleTaskGP, ModelList, ModelListGP
    from botorch.fit import fit_gpytorch_mll
    from botorch.utils import standardize
    from gpytorch.mlls import ExactMarginalLogLikelihood
    from botorch.acquisition import qNoisyExpectedImprovement
    
    
    train_X = torch.rand(10, 2)
    Y = 1 - torch.norm(train_X - 0.5, dim=-1, keepdim=True)
    Y = Y + 0.1 * torch.randn_like(Y)  # add some noise
    train_Y = standardize(Y)
    
    gp = SingleTaskGP(train_X, train_Y)
    mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
    fit_gpytorch_mll(mll)
    
    ml = ModelList(gp)
    
    
    qNoisyExpectedImprovement(model=ml, X_baseline=train_X)
    

    And this is the error trace:

    Cell In [22], line 21
         16 fit_gpytorch_mll(mll)
         18 ml = ModelList(gp)
    ---> 21 qNoisyExpectedImprovement(model=ml, X_baseline=train_X)
    
    File ~/sandbox/botorch/botorch/acquisition/monte_carlo.py:294, in qNoisyExpectedImprovement.__init__(self, model, X_baseline, sampler, objective, posterior_transform, X_pending, prune_baseline, cache_root, **kwargs)
        290 self.register_buffer("baseline_samples", baseline_samples)
        291 self.register_buffer(
        292     "baseline_obj_max_values", baseline_obj.max(dim=-1).values
        293 )
    --> 294 self._baseline_L = self._compute_root_decomposition(posterior=posterior)
    
    File ~/sandbox/botorch/botorch/acquisition/cached_cholesky.py:92, in CachedCholeskyMCAcquisitionFunction._compute_root_decomposition(self, posterior)
         71 def _compute_root_decomposition(
         72     self,
         73     posterior: Posterior,
         74 ) -> Tensor:
         75     r"""Cache Cholesky of the posterior covariance over f(X_baseline).
         76 
         77     Because `LinearOperator.root_decomposition` is decorated with LinearOperator's
       (...)
         90         posterior: The posterior over f(X_baseline).
         91     """
    ...
        181         f"`PosteriorList` does not define the attribute {name}. "
        182         "Consider accessing the attributes of the individual posteriors instead."
        183     )
    
    AttributeError: `PosteriorList` does not define the attribute distribution. Consider accessing the attributes of the individual posteriors instead.
    
    opened by jduerholt 4
Releases(v0.8.1)
  • v0.8.1(Jan 6, 2023)

    [0.8.1] - Jan 5, 2023

    Highlights

    • This release includes changes for compatibility with the newest versions of linear_operator and gpytorch.
    • Several acquisition functions now have "Log" counterparts, which provide better numerical behavior for improvement-based acquisition functions in areas where the probability of improvement is low. For example, LogExpectedImprovement (#1565) should behave better than ExpectedImprovement. These new acquisition functions are
      • LogExpectedImprovement (#1565).
      • LogNoisyExpectedImprovement (#1577).
      • LogProbabilityOfImprovement (#1594).
      • LogConstrainedExpectedImprovement (#1594).
    • Bug fix: Stop ModelListGP.posterior from quietly ignoring Log, Power, and Bilog outcome transforms (#1563).
    • Turn off fast_computations setting in linear_operator by default (#1547).

    Compatibility

    • Require linear_operator == 0.3.0 (#1538).
    • Require pyro-ppl >= 1.8.4 (#1606).
    • Require gpytorch == 1.9.1 (#1612).

    New Features

    • Add eta to get_acquisition_function (#1541).
    • Support 0d-features in FixedFeatureAcquisitionFunction (#1546).
    • Add timeout ability to optimization functions (#1562, #1598).
    • Add MultiModelAcquisitionFunction, an abstract base class for acquisition functions that require multiple types of models (#1584).
    • Add cache_root option for qNEI in get_acquisition_function (#1608).

    Other changes

    • Docstring corrections (#1551, #1557, #1573).
    • Removal of _fit_multioutput_independent and allclose_mll (#1570).
    • Better numerical behavior for fully Bayesian models (#1576).
    • More verbose Scipy minimize failure messages (#1579).
    • Lower-bound noise inSaasPyroModel to avoid Cholesky errors (#1586).

    Bug fixes

    • Error rather than failing silently for NaN values in box decomposition (#1554).
    • Make get_bounds_as_ndarray device-safe (#1567).
    Source code(tar.gz)
    Source code(zip)
  • v0.8.0(Dec 7, 2022)

    Highlights

    This release includes some backwards incompatible changes.

    • Refactor Posterior and MCSampler modules to better support non-Gaussian distributions in BoTorch (#1486).
      • Introduced a TorchPosterior object that wraps a PyTorch Distribution object and makes it compatible with the rest of Posterior API.
      • PosteriorList no longer accepts Gaussian base samples. It should be used with a ListSampler that includes the appropriate sampler for each posterior.
      • The MC acquisition functions no longer construct a Sobol sampler by default. Instead, they rely on a get_sampler helper, which dispatches an appropriate sampler based on the posterior provided.
      • The resample and collapse_batch_dims arguments to MCSamplers have been removed. The ForkedRNGSampler and StochasticSampler can be used to get the same functionality.
      • Refer to the PR for additional changes. We will update the website documentation to reflect these changes in a future release.
    • #1191 refactors much of botorch.optim to operate based on closures that abstract away how losses (and gradients) are computed. By default, these closures are created using multiply-dispatched factory functions (such as get_loss_closure), which may be customized by registering methods with an associated dispatcher (e.g. GetLossClosure). Future releases will contain tutorials that explore these features in greater detail.

    New Features

    • Add mixed optimization for list optimization (#1342).
    • Add entropy search acquisition functions (#1458).
    • Add utilities for straight-through gradient estimators for discretization functions (#1515).
    • Add support for categoricals in Round input transform and use STEs (#1516).
    • Add closure-based optimizers (#1191).

    Other Changes

    • Do not count hitting maxiter as optimization failure & update default maxiter (#1478).
    • BoxDecomposition cleanup (#1490).
    • Deprecate torch.triangular_solve in favor of torch.linalg.solve_triangular (#1494).
    • Various docstring improvements (#1496, #1499, #1504).
    • Remove __getitem__ method from LinearTruncatedFidelityKernel (#1501).
    • Handle Cholesky errors when fitting a fully Bayesian model (#1507).
    • Make eta configurable in apply_constraints (#1526).
    • Support SAAS ensemble models in RFFs (#1530).
    • Deprecate botorch.optim.numpy_converter (#1191).
    • Deprecate fit_gpytorch_scipy and fit_gpytorch_torch (#1191).

    Bug Fixes

    • Enforce use of float64 in NdarrayOptimizationClosure (#1508).
    • Replace deprecated np.bool with equivalent bool (#1524).
    • Fix RFF bug when using FixedNoiseGP models (#1528).
    Source code(tar.gz)
    Source code(zip)
  • 0.7.3(Nov 10, 2022)

    Highlights

    • #1454 fixes a critical bug that affected multi-output BatchedMultiOutputGPyTorchModels that were using a Normalize or InputStandardize input transform and trained using fit_gpytorch_model/mll with sequential=True (which was the default until 0.7.3). The input transform buffers would be reset after model training, leading to the model being trained on normalized input data but evaluated on raw inputs. This bug had been affecting model fits since the 0.6.5 release.
    • #1479 changes the inheritance structure of Models in a backwards-incompatible way. If your code relies on isinstance checks with BoTorch Models, especially SingleTaskGP, you should revisit these checks to make sure they still work as expected.

    Compatibility

    • Require linear_operator == 0.2.0 (#1491).

    New Features

    • Introduce bvn, MVNXPB, TruncatedMultivariateNormal, and UnifiedSkewNormal classes / methods (#1394, #1408).
    • Introduce AffineInputTransform (#1461).
    • Introduce a subset_transform decorator to consolidate subsetting of inputs in input transforms (#1468).

    Other Changes

    • Add a warning when using float dtype (#1193).
    • Let Pyre know that AcquisitionFunction.model is a Model (#1216).
    • Remove custom BlockDiagLazyTensor logic when using Standardize (#1414).
    • Expose _aug_batch_shape in SaasFullyBayesianSingleTaskGP (#1448).
    • Adjust PairwiseGP ScaleKernel prior (#1460).
    • Pull out fantasize method into a FantasizeMixin class, so it isn't so widely inherited (#1462, #1479).
    • Don't use Pyro JIT by default , since it was causing a memory leak (#1474).
    • Use get_default_partitioning_alpha for NEHVI input constructor (#1481).

    Bug Fixes

    • Fix batch_shape property of ModelListGPyTorchModel (#1441).
    • Tutorial fixes (#1446, #1475).
    • Bug-fix for Proximal acquisition function wrapper for negative base acquisition functions (#1447).
    • Handle RuntimeError due to constraint violation while sampling from priors (#1451).
    • Fix bug in model list with output indices (#1453).
    • Fix input transform bug when sequentially training a BatchedMultiOutputGPyTorchModel (#1454).
    • Fix a bug in _fit_multioutput_independent that failed mll comparison (#1455).
    • Fix box decomposition behavior with empty or None Y (#1489).
    Source code(tar.gz)
    Source code(zip)
  • v0.7.2(Sep 27, 2022)

    New Features

    • A full refactor of model fitting methods (#1134).
      • This introduces a new fit_gpytorch_mll method that multiple-dispatches on the model type. Users may register custom fitting routines for different combinations of MLLs, Likelihoods, and Models.
      • Unlike previous fitting helpers, fit_gpytorch_mll does not pass kwargs to optimizer and instead introduces an optional optimizer_kwargs argument.
      • When a model fitting attempt fails, botorch.fit methods restore modules to their original states.
      • fit_gpytorch_mll throws a ModelFittingError when all model fitting attempts fail.
      • Upon returning from fit_gpytorch_mll, mll.training will be True if fitting failed and False otherwise.
    • Allow custom bounds to be passed in to SyntheticTestFunction (#1415).

    Deprecations

    • Deprecate weights argument of risk measures in favor of a preprocessing_function (#1400),
    • Deprecate fit_gyptorch_model; to be superseded by fit_gpytorch_mll.

    Other Changes

    • Support risk measures in MOO input constructors (#1401).

    Bug Fixes

    • Fix fully Bayesian state dict loading when there are more than 10 models (#1405).
    • Fix batch_shape property of SaasFullyBayesianSingleTaskGP (#1413).
    • Fix model_list_to_batched ignoring the covar_module of the input models (#1419).
    Source code(tar.gz)
    Source code(zip)
  • v0.7.1(Sep 13, 2022)

    Compatibility

    • Pin GPyTorch == 1.9.0 (#1397).
    • Pin linear_operator == 0.1.1 (#1397).

    New Features

    • Implement SaasFullyBayesianMultiTaskGP and related utilities (#1181, #1203).

    Other Changes

    • Support loading a state dict for SaasFullyBayesianSingleTaskGP (#1120).
    • Update load_state_dict for ModelList to support fully Bayesian models (#1395).
    • Add is_one_to_many attribute to input transforms (#1396).

    Bug Fixes

    • Fix PairwiseGP on GPU (#1388).
    Source code(tar.gz)
    Source code(zip)
  • v0.7.0(Sep 7, 2022)

    Compatibility

    • Require python >= 3.8 (via #1347).
    • Support for python 3.10 (via #1379).
    • Require PyTorch >= 1.11 (via (#1363).
    • Require GPyTorch >= 1.9.0 (#1347).
      • GPyTorch 1.9.0 is a major refactor that factors out the lazy tensor functionality into a new LinearOperator library, which required a number of adjustments to BoTorch (#1363, #1377).
    • Require pyro >= 1.8.2 (#1379).

    New Features

    • Add ability to generate the features appended in the AppendFeatures input transform via a generic callable (#1354).
    • Add new synthetic test functions for sensitivity analysis (#1355, #1361).

    Other Changes

    • Use time.monotonic() instead of time.time() to measure duration (#1353).
    • Allow passing Y_samples directly in MARS.set_baseline_Y (#1364).

    Bug Fixes

    • Patch state_dict loading for PairwiseGP (#1359).
    • Fix batch_shape handling in Normalize and InputStandardize transforms (#1360).
    Source code(tar.gz)
    Source code(zip)
  • v0.6.6(Aug 12, 2022)

    [0.6.6] - Aug 12, 2022

    Compatibility

    • Require GPyTorch >= 1.8.1 (#1347).

    New Features

    • Support batched models in RandomFourierFeatures (#1336).
    • Add a skip_expand option to AppendFeatures (#1344).

    Other Changes

    • Allow qProbabilityOfImprovement to use batch-shaped best_f (#1324).
    • Make optimize_acqf re-attempt failed optimization runs and handle optimization errors in optimize_acqf and gen_candidates_scipy better (#1325).
    • Reduce memory overhead in MARS.set_baseline_Y (#1346).

    Bug Fixes

    • Fix bug where outcome_transform was ignored for ModelListGP.fantasize (#1338).
    • Fix bug causing get_polytope_samples to sample incorrectly when variables live in multiple dimensions (#1341).

    Documentation

    • Add more descriptive docstrings for models (#1327, #1328, #1329, #1330) and for other classes (#1313).
    • Expanded on the model documentation at botorch.org/docs/models (#1337).
    Source code(tar.gz)
    Source code(zip)
  • v0.6.5(Jul 15, 2022)

    Compatibility

    • Require PyTorch >=1.10 (#1293).
    • Require GPyTorch >=1.7 (#1293).

    New Features

    • Add MOMF (Multi-Objective Multi-Fidelity) acquisition function (#1153).
    • Support PairwiseLogitLikelihood and modularize PairwiseGP (#1193).
    • Add in transformed weighting flag to Proximal Acquisition function (#1194).
    • Add FeasibilityWeightedMCMultiOutputObjective (#1202).
    • Add outcome_transform to FixedNoiseMultiTaskGP (#1255).
    • Support Scalable Constrained Bayesian Optimization (#1257).
    • Support SaasFullyBayesianSingleTaskGP in prune_inferior_points (#1260).
    • Implement MARS as a risk measure (#1303).
    • Add MARS tutorial (#1305).

    Other Changes

    • Add Bilog outcome transform (#1189).
    • Make get_infeasible_cost return a cost value for each outcome (#1191).
    • Modify risk measures to accept List[float] for weights (#1197).
    • Support SaasFullyBayesianSingleTaskGP in prune_inferior_points_multi_objective (#1204).
    • BotorchContainers and BotorchDatasets: Large refactor of the original TrainingData API to allow for more diverse types of datasets (#1205, #1221).
    • Proximal biasing support for multi-output SingleTaskGP models (#1212).
    • Improve error handling in optimize_acqf_discrete with a check that choices is non-empty (#1228).
    • Handle X_pending properly in FixedFeatureAcquisition (#1233, #1234).
    • PE and PLBO support in Ax (#1240, #1241).
    • Remove model.train call from get_X_baseline for better caching (#1289).
    • Support inf values in bounds argument of optimize_acqf (#1302).

    Bug Fixes

    • Update get_gp_samples to support input / outcome transforms (#1201).
    • Fix cached Cholesky sampling in qNEHVI when using Standardize outcome transform (#1215).
    • Make task_feature as required input in MultiTaskGP.construct_inputs (#1246).
    • Fix CUDA tests (#1253).
    • Fix FixedSingleSampleModel dtype/device conversion (#1254).
    • Prevent inappropriate transforms by putting input transforms into train mode before converting models (#1283).
    • Fix sample_points_around_best when using 20 dimensional inputs or prob_perturb (#1290).
    • Skip bound validation in optimize_acqf if inequality constraints are specified (#1297).
    • Properly handle RFFs when used with a ModelList with individual transforms (#1299).
    • Update PosteriorList to support deterministic-only models and fix event_shape (#1300).

    Documentation

    • Add a note about observation noise in the posterior in fit_model_with_torch_optimizer notebook (#1196).
    • Fix custom botorch model in Ax tutorial to support new interface (#1213).
    • Update MOO docs (#1242).
    • Add SMOKE_TEST option to MOMF tutorial (#1243).
    • Fix ModelListGP.condition_on_observations/fantasize bug (#1250).
    • Replace space with underscore for proper doc generation (#1256).
    • Update PBO tutorial to use EUBO (#1262).
    Source code(tar.gz)
    Source code(zip)
  • v0.6.4(Apr 21, 2022)

    New Features

    • Implement ExpectationPosteriorTransform (#903).
    • Add PairwiseMCPosteriorVariance, a cheap active learning acquisition function (#1125).
    • Support computing quantiles in the fully Bayesian posterior, add FullyBayesianPosteriorList (#1161).
    • Add expectation risk measures (#1173).
    • Implement Multi-Fidelity GIBBON (Lower Bound MES) acquisition function (#1185).

    Other Changes

    • Add an error message for one shot acquisition functions in optimize_acqf_discrete (#939).
    • Validate the shape of the bounds argument in optimize_acqf (#1142).
    • Minor tweaks to SAASBO (#1143, #1183).
    • Minor updates to tutorials (24f7fda7b40d4aabf502c1a67816ac1951af8c23, #1144, #1148, #1159, #1172, #1180).
    • Make it easier to specify a custom PyroModel (#1149).
    • Allow passing in a mean_module to SingleTaskGP/FixedNoiseGP (#1160).
    • Add a note about acquisitions using gradients to base class (#1168).
    • Remove deprecated box_decomposition module (#1175).

    Bug Fixes

    • Bug-fixes for ProximalAcquisitionFunction (#1122).
    • Fix missing warnings on failed optimization in fit_gpytorch_scipy (#1170).
    • Ignore data related buffers in PairwiseGP.load_state_dict (#1171).
    • Make fit_gpytorch_model properly honor the debug flag (#1178).
    • Fix missing posterior_transform in gen_one_shot_kg_initial_conditions (#1187).
    Source code(tar.gz)
    Source code(zip)
  • v0.6.3.1(Mar 28, 2022)

    New Features

    • Implement SAASBO - SaasFullyBayesianSingleTaskGP model for sample-efficient high-dimensional Bayesian optimization (#1123).
    • Add SAASBO tutorial (#1127).
    • Add LearnedObjective (#1131), AnalyticExpectedUtilityOfBestOption acquisition function (#1135), and a few auxiliary classes to support Bayesian optimization with preference exploration (BOPE).
    • Add BOPE tutorial (#1138).

    Other Changes

    • Use qKG.evaluate in optimize_acqf_mixed (#1133).
    • Add construct_inputs to SAASBO (#1136).

    Bug Fixes

    • Fix "Constraint Active Search" tutorial (#1124).
    • Update "Discrete Multi-Fidelity BO" tutorial (#1134).
    Source code(tar.gz)
    Source code(zip)
  • v0.6.2(Mar 9, 2022)

    New Features

    • Use BOTORCH_MODULAR in tutorials with Ax (#1105).
    • Add optimize_acqf_discrete_local_search for discrete search spaces (#1111).

    Bug Fixes

    • Fix missing posterior_transform in qNEI and get_acquisition_function (#1113).
    Source code(tar.gz)
    Source code(zip)
  • v0.6.1(Feb 28, 2022)

    New Features

    • Add Standardize input transform (#1053).
    • Low-rank Cholesky updates for NEI (#1056).
    • Add support for non-linear input constraints (#1067).
    • New MOO problems: MW7 (#1077), disc brake (#1078), penicillin (#1079), RobustToy (#1082), GMM (#1083).

    Other Changes

    • Add Dispatcher (#1009).
    • Modify qNEHVI to support deterministic models (#1026).
    • Store tensor attributes of input transforms as buffers (#1035).
    • Modify NEHVI to support MTGPs (#1037).
    • Make Normalize input transform input column-specific (#1047).
    • Improve find_interior_point (#1049).
    • Remove deprecated botorch.distributions module (#1061).
    • Avoid costly application of posterior transform in Kronecker & HOGP models (#1076).
    • Support heteroscedastic perturbations in InputPerturbations (#1088).

    Performance Improvements

    • Make risk measures more memory efficient (#1034).

    Bug Fixes

    • Properly handle empty fixed_features in optimization (#1029).
    • Fix missing weights in VaR risk measure (#1038).
    • Fix find_interior_point for negative variables & allow unbounded problems (#1045).
    • Filter out indefinite bounds in constraint utilities (#1048).
    • Make non-interleaved base samples use intuitive shape (#1057).
    • Pad small diagonalization with zeros for KroneckerMultitaskGP (#1071).
    • Disable learning of bounds in preprocess_transform (#1089).
    • Catch runtime errors with ill-conditioned covar (#1095).
    • Fix compare_mc_analytic_acquisition tutorial (#1099).
    Source code(tar.gz)
    Source code(zip)
  • v0.6.0(Dec 9, 2021)

    Compatibility

    • Require PyTorch >=1.9 (#1011).
    • Require GPyTorch >=1.6 (#1011).

    New Features

    • New ApproximateGPyTorchModel wrapper for various (variational) approximate GP models (#1012).
    • New SingleTaskVariationalGP stochastic variational Gaussian Process model (#1012).
    • Support for Multi-Output Risk Measures (#906, #965).
    • Introduce ModelList and PosteriorList (#829).
    • New Constraint Active Search tutorial (#1010).
    • Add additional multi-objective optimization test problems (#958).

    Other Changes

    • Add covar_module as an optional input of MultiTaskGP models (#941).
    • Add min_range argument to Normalize transform to prevent division by zero (#931).
    • Add initialization heuristic for acquisition function optimization that samples around best points (#987).
    • Update initialization heuristic to perturb a subset of the dimensions of the best points if the dimension is > 20 (#988).
    • Modify apply_constraints utility to work with multi-output objectives (#994).
    • Short-cut t_batch_mode_transform decorator on non-tensor inputs (#991).

    Performance Improvements

    • Use lazy covariance matrix in BatchedMultiOutputGPyTorchModel.posterior (#976).
    • Fast low-rank Cholesky updates for qNoisyExpectedHypervolumeImprovement (#747, #995, #996).

    Bug Fixes

    • Update error handling to new PyTorch linear algebra messages (#940).
    • Avoid test failures on Ampere devices (#944).
    • Fixes to the Griewank test function (#972).
    • Handle empty base_sample_shape in Posterior.rsample (#986).
    • Handle NotPSDError and hitting maxiter in fit_gpytorch_model (#1007).
    • Use TransformedPosterior for subclasses of GPyTorchPosterior (#983).
    • Propagate best_f argument to qProbabilityOfImprovement in input constructors (f5a5f8b6dc20413e67c6234e31783ac340797a8d)
    Source code(tar.gz)
    Source code(zip)
  • v0.5.1(Sep 2, 2021)

    Compatibility

    • Require GPyTorch >=1.5.1 (#928).

    New Features

    • Add HigherOrderGP composite Bayesian Optimization tutorial notebook (#864).
    • Add Multi-Task Bayesian Optimization tutorial (#867).
    • New multi-objective test problems from (#876).
    • Add PenalizedMCObjective and L1PenaltyObjective (#913).
    • Add a ProximalAcquisitionFunction for regularizing new candidates towards previously generated ones (#919, #924).
    • Add a Power outcome transform (#925).

    Bug Fixes

    • Batch mode fix for HigherOrderGP initialization (#856).
    • Improve CategoricalKernel precision (#857).
    • Fix an issue with qMultiFidelityKnowledgeGradient.evaluate (#858).
    • Fix an issue with transforms with HigherOrderGP. (#889)
    • Fix initial candidate generation when parameter constraints are on different device (#897).
    • Fix bad in-place op in _generate_unfixed_lin_constraints (#901).
    • Fix an input transform bug in fantasize call (#902).
    • Fix outcome transform bug in batched_to_model_list (#917).

    Other Changes

    • Make variance optional for TransformedPosterior.mean (#855).
    • Support transforms in DeterministicModel (#869).
    • Support batch_shape in RandomFourierFeatures (#877).
    • Add a maximize flag to PosteriorMean (#881).
    • Ignore categorical dimensions when validating training inputs in MixedSingleTaskGP (#882).
    • Refactor HigherOrderGPPosterior for memory efficiency (#883).
    • Support negative weights for minimization objectives in get_chebyshev_scalarization (#884).
    • Move train_inputs transforms to model.train/eval calls (#894).
    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Jun 29, 2021)

    Compatibility

    • Require PyTorch >=1.8.1 (#832).
    • Require GPyTorch >=1.5 (#848).
    • Changes to how input transforms are applied: transform_inputs is applied in model.forward if the model is in train mode, otherwise it is applied in the posterior call (#819, #835).

    New Features

    • Improved multi-objective optimization capabilities:
      • qNoisyExpectedHypervolumeImprovement acquisition function that improves on qExpectedHypervolumeImprovement in terms of tolerating observation noise and speeding up computation for large q-batches (#797, #822).
      • qMultiObjectiveMaxValueEntropy acqusition function (913aa0e510dde10568c2b4b911124cdd626f6905, #760).
      • Heuristic for reference point selection (#830).
      • FastNondominatedPartitioning for Hypervolume computations (#699).
      • DominatedPartitioning for partitioning the dominated space (#726).
      • BoxDecompositionList for handling box decompositions of varying sizes (#712).
      • Direct, batched dominated partitioning for the two-outcome case (#739).
      • get_default_partitioning_alpha utility providing heuristic for selecting approximation level for partitioning algorithms (#793).
      • New method for computing Pareto Frontiers with less memory overhead (#842, #846).
    • New qLowerBoundMaxValueEntropy acquisition function (a.k.a. GIBBON), a lightweight variant of Multi-fidelity Max-Value Entropy Search using a Determinantal Point Process approximation (#724, #737, #749).
    • Support for discrete and mixed input domains:
      • CategoricalKernel for categorical inputs (#771).
      • MixedSingleTaskGP for mixed search spaces (containing both categorical and ordinal parameters) (#772, #847).
      • optimize_acqf_discrete for optimizing acquisition functions over fully discrete domains (#777).
      • Extend optimize_acqf_mixed to allow batch optimization (#804).
    • Support for robust / risk-aware optimization:
      • Risk measures for robust / risk-averse optimization (#821).
      • AppendFeatures transform (#820).
      • InputPerturbation input transform for for risk averse BO with implementation errors (#827).
      • Tutorial notebook for Bayesian Optimization of risk measures (#823).
      • Tutorial notebook for risk-averse Bayesian Optimization under input perturbations (#828).
    • More scalable multi-task modeling and sampling:
      • KroneckerMultiTaskGP model for efficient multi-task modeling for block-design settings (all tasks observed at all inputs) (#637).
      • Support for transforms in Multi-Task GP models (#681).
      • Posterior sampling based on Matheron's rule for Multi-Task GP models (#841).
    • Various changes to simplify and streamline integration with Ax:
      • Handle non-block designs in TrainingData (#794).
      • Acquisition function input constructor registry (#788, #802, #845).
    • Random Fourier Feature (RFF) utilties for fast (approximate) GP function sampling (#750).
    • DelaunayPolytopeSampler for fast uniform sampling from (simple) polytopes (#741).
    • Add evaluate method to ScalarizedObjective (#795).

    Bug Fixes

    • Handle the case when all features are fixed in optimize_acqf (#770).
    • Pass fixed_features to initial candidate generation functions (#806).
    • Handle batch empty pareto frontier in FastPartitioning (#740).
    • Handle empty pareto set in is_non_dominated (#743).
    • Handle edge case of no or a single observation in get_chebyshev_scalarization (#762).
    • Fix an issue in gen_candidates_torch that caused problems with acqusition functions using fantasy models (#766).
    • Fix HigherOrderGP dtype bug (#728).
    • Normalize before clamping in Warp input warping transform (#722).
    • Fix bug in GP sampling (#764).

    Other Changes

    • Modify input transforms to support one-to-many transforms (#819, #835).
    • Make initial conditions for acquisition function optimization honor parameter constraints (#752).
    • Perform optimization only over unfixed features if fixed_features is passed (#839).
    • Refactor Max Value Entropy Search Methods (#734).
    • Use Linear Algebra functions from the torch.linalg module (#735).
    • Use PyTorch's Kumaraswamy distribution (#746).
    • Improved capabilities and some bugfixes for batched models (#723, #767).
    • Pass callback argument to scipy.optim.minimize in gen_candidates_scipy (#744).
    • Modify behavior of X_pending in in multi-objective acqusiition functions (#747).
    • Allow multi-dimensional batch shapes in test functions (#757).
    • Utility for converting batched multi-output models into batched single-output models (#759).
    • Explicitly raise NotPSDError in _scipy_objective_and_grad (#787).
    • Make raw_samples optional if batch_initial_conditions is passed (#801).
    • Use powers of 2 in qMC docstrings & examples (#812).
    Source code(tar.gz)
    Source code(zip)
  • v0.4.0(Feb 23, 2021)

    Compatibility

    • Require PyTorch >=1.7.1 (#714).
    • Require GPyTorch >=1.4 (#714).

    New Features

    • HigherOrderGP - High-Order Gaussian Process (HOGP) model for high-dimensional output regression (#631, #646, #648, #680).
    • qMultiStepLookahead acquisition function for general look-ahead optimization approaches (#611, #659).
    • ScalarizedPosteriorMean and project_to_sample_points for more advanced MFKG functionality (#645).
    • Large-scale Thompson sampling tutorial (#654, #713).
    • Tutorial for optimizing mixed continuous/discrete domains (application to multi-fidelity KG with discrete fidelities) (#716).
    • GPDraw utility for sampling from (exact) GP priors (#655).
    • Add X as optional arg to call signature of MCAcqusitionObjective (#487).
    • OSY synthetic test problem (#679).

    Bug Fixes

    • Fix matrix multiplication in scalarize_posterior (#638).
    • Set X_pending in get_acquisition_function in qEHVI (#662).
    • Make contextual kernel device-aware (#666).
    • Do not use an MCSampler in MaxPosteriorSampling (#701).
    • Add ability to subset outcome transforms (#711).

    Performance Improvements

    • Batchify box decomposition for 2d case (#642).

    Other Changes

    • Use scipy distribution in MES quantile bisect (#633).
    • Use new closure definition for GPyTorch priors (#634).
    • Allow enabling of approximate root decomposition in posterior calls (#652).
    • Support for upcoming 21201-dimensional PyTorch SobolEngine (#672, #674).
    • Refactored various MOO utilities to allow future additions (#656, #657, #658, #661).
    • Support input_transform in PairwiseGP (#632).
    • Output shape checks for t_batch_mode_transform (#577).
    • Check for NaN in gen_candidates_scipy (#688).
    • Introduce base_sample_shape property to Posterior objects (#718).
    Source code(tar.gz)
    Source code(zip)
  • v0.3.3(Dec 8, 2020)

    Compatibility

    • Require PyTorch >=1.7 (#614).
    • Require GPyTorch >=1.3 (#614).

    New Features

    Bug fixes

    • Fix bounds of HolderTable synthetic function (#596).
    • Fix device issue in MOO tutorial (#621).

    Other changes

    • Add train_inputs option to qMaxValueEntropy (#593).
    • Enable gpytorch settings to override BoTorch defaults for fast_pred_var and debug (#595).
    • Rename set_train_data_transform -> preprocess_transform (#575).
    • Modify _expand_bounds() shape checks to work with >2-dim bounds (#604).
    • Add batch_shape property to models (#588).
    • Modify qMultiFidelityKnowledgeGradient.evaluate() to work with project, expand and cost_aware_utility (#594).
    • Add list of papers using BoTorch to website docs (#617).
    Source code(tar.gz)
    Source code(zip)
  • v0.3.2(Oct 26, 2020)

    New Features

    • Add PenalizedAcquisitionFunction wrapper (#585)
    • Input transforms
      • Reversible input transform (#550)
      • Rounding input transform (#562)
      • Log input transform (#563)
    • Differentiable approximate rounding for integers (#561)

    Bug fixes

    • Fix sign error in UCB when maximize=False (a4bfacbfb2109d3b89107d171d2101e1995822bb)
    • Fix batch_range sample shape logic (#574)

    Other changes

    • Better support for two stage sampling in preference learning (0cd13d0cb49b1ac8d0971e42f1f0e9dd6126fd9a)
    • Remove noise term in PairwiseGP and add ScaleKernel by default (#571)
    • Rename prior to task_covar_prior in MultiTaskGP and FixedNoiseMultiTaskGP (16573fea066d8bb682dc68526f42b6ec7c22a555)
    • Support only transforming inputs on training or evaluation (#551)
    • Add equals method for InputTransform (#552)
    Source code(tar.gz)
    Source code(zip)
  • v0.3.1(Sep 16, 2020)

    New Features

    • Constrained Multi-Objective tutorial (#493)
    • Multi-fidelity Knowledge Gradient tutorial (#509)
    • Support for batch qMC sampling (#510)
    • New evaluate method for qKnowledgeGradient (#515)

    Compatibility

    • Require PyTorch >=1.6 (#535)
    • Require GPyTorch >=1.2 (#535)
    • Remove deprecated botorch.gen module (#532)

    Bug fixes

    • Fix bad backward-indexing of task_feature in MultiTaskGP (#485)
    • Fix bounds in constrained Branin-Currin test function (#491)
    • Fix max_hv for C2DTLZ2 and make Hypervolume always return a float (#494)
    • Fix bug in draw_sobol_samples that did not use the proper effective dimension (#505)
    • Fix constraints for q>1 in qExpectedHypervolumeImprovement (c80c4fdb0f83f0e4f12e4ec4090d0478b1a8b532)
    • Only use feasible observations in partitioning for qExpectedHypervolumeImprovement in get_acquisition_function (#523)
    • Improved GPU compatibility for PairwiseGP (#537)

    Performance Improvements

    • Reduce memory footprint in qExpectedHypervolumeImprovement (#522)
    • Add (q)ExpectedHypervolumeImprovement to nonnegative functions [for better initialization] (#496)

    Other changes

    • Support batched best_f in qExpectedImprovement (#487)
    • Allow to return full tree of solutions in OneShotAcquisitionFunction (#488)
    • Added construct_inputs class method to models to programmatically construct the inputs to the constructor from a standardized TrainingData representation (#477, #482, 3621198d02195b723195b043e86738cd5c3b8e40)
    • Acquisition function constructors now accept catch-all **kwargs options (#478, e5b69352954bb10df19a59efe9221a72932bfe6c)
    • Use psd_safe_cholesky in qMaxValueEntropy for better numerical stabilty (#518)
    • Added WeightedMCMultiOutputObjective (81d91fd2e115774e561c8282b724457233b6d49f)
    • Add ability to specify outcomes to all multi-output objectives (#524)
    • Return optimization output in info_dict for fit_gpytorch_scipy (#534)
    • Use setuptools_scm for versioning (#539)
    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Jul 6, 2020)

    New Features

    • Multi-Objective Acquisition Functions (#466)
      • q-Expected Hypervolume Improvement
      • q-ParEGO
      • Analytic Expected Hypervolume Improvement with auto-differentiation
    • Multi-Objective Utilities (#466)
      • Pareto Computation
      • Hypervolume Calculation
      • Box Decomposition algorithm
    • Multi-Objective Test Functions (#466)
      • Suite of synthetic test functions for multi-objective, constrained optimzation
    • Multi-Objective Tutorial (#468)
    • Abstract ConstrainedBaseTestProblem (#454)
    • Add optimize_acqf_list method for sequentially, greedily optimizing 1 candidate from each provided acquisition function (d10aec911b241b208c59c192beb9e4d572a092cd)

    Bug fixes

    • Fixed re-arranging mean in MultiTask multi-output models (#450).

    Other changes

    • Move gpt_posterior_settings into models.utils (#449)
    • Allow specifications of batch dims to collapse in samplers (#457)
    • Remove outcome transform before model-fitting for sequential model fitting in multi-output models (#458)
    Source code(tar.gz)
    Source code(zip)
  • v0.2.5(May 14, 2020)

  • v0.2.4(May 13, 2020)

    Bug fixes

    • There was a mysterious issue with the 0.2.3 wheel on pypi, where part of the botorch/optim/utils.py file was not included, which resulted in an ImportError for many central components of the code. Interestingly, the source dist (built with the same command) did not have this issue.
    • Preserve order in ChainedOutcomeTransform (#440).

    New Features

    • Utilities for estimating the feasible volume under outcome constraints (#437).
    Source code(tar.gz)
    Source code(zip)
  • v0.2.3(Apr 26, 2020)

    Introduces a new Pairwise GP model for Preference Learning with pair-wise preferential feedback, as well as a Sampling Strategies abstraction for generating candidates from a discrete candidate set.

    Compatibility

    • Require PyTorch >=1.5 (#423).
    • Require GPyTorch >=1.1.1 (#425).

    New Features

    • Add PairwiseGP for preference learning with pair-wise comparison data (#388).
    • Add SamplingStrategy abstraction for sampling-based generation strategies, including MaxPosteriorSampling (i.e. Thompson Sampling) and BoltzmannSampling (#218, #407).

    Deprecations

    • The existing botorch.gen module is moved to botorch.generation.gen and imports from botorch.gen will raise a warning (an error in the next release) (#218).

    Bug fixes

    • Fix & update a number of tutorials (#394, #398, #393, #399, #403).
    • Fix CUDA tests (#404).
    • Fix sobol maxdim limitation in prune_baseline (#419).

    Other changes

    • Better stopping criteria for stochastic optimization (#392).
    • Improve numerical stability of LinearTruncatedFidelityKernel (#409).
    • Allow batched best_f in qExpectedImprovement and qProbabilityOfImprovement (#411).
    • Introduce new logger framework (#412).
    • Faster indexing in some situations (#414).
    • More generic BaseTestProblem (9e604fe2188ac85294c143d249872415c4d95823).
    Source code(tar.gz)
    Source code(zip)
  • v0.2.2(Mar 9, 2020)

    Require Python 3.7 and adds new features for active learning and multi-fidelity optimization, along with a number of bug fixes.

    Compatibility

    • Require PyTorch >=1.4 (#379).
    • Require Python >=3.7 (#378).

    New Features

    • Add qNegIntegratedPosteriorVariance for Bayesian active learning (#377).
    • Add FixedNoiseMultiFidelityGP, analogous to SingleTaskMultiFidelityGP (#386).
    • Support scalarize_posterior for m>1 and q>1 posteriors (#374).
    • Support subset_output method on multi-fidelity models (#372).
    • Add utilities for sampling from simplex and hypersphere (#369).

    Bug fixes

    • Fix TestLoader local test discovery (#376).
    • Fix batch-list conversion of SingleTaskMultiFidelityGP (#370).
    • Validate tensor args before checking input scaling for more informative error messaages (#368).
    • Fix flaky qNoisyExpectedImprovement test (#362).
    • Fix test function in closed-loop tutorial (#360).
    • Fix num_output attribute in BoTorch/Ax tutorial (#355).

    Other changes

    • Require output dimension in MultiTaskGP (#383).
    • Update code of conduct (#380).
    • Remove deprecated joint_optimize and sequential_optimize (#363).
    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Jan 16, 2020)

    Minor bug fix release.

    New Features

    • Add a static method for getting batch shapes for batched MO models (#346).

    Bug fixes

    • Revamp qKG constructor to avoid issue with missing objective (#351).
    • Make sure MVES can support sampled costs like KG (#352).

    Other changes

    • Allow custom module-to-array handling in fit_gpytorch_scipy (#341).
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Dec 20, 2019)

    This release adds the popular Max-value Entropy Search (MES) acquisition function, as well as support for multi-fidelity Bayesian optimization via both the Knowledge Gradient (KG) and MES.

    Compatibility

    • Require PyTorch >=1.3.1 (#313).
    • Require GPyTorch >=1.0 (#342).

    New Features

    • Add cost-aware KnowledgeGradient (qMultiFidelityKnowledgeGradient) for multi-fidelity optimization (#292).
    • Add qMaxValueEntropy and qMultiFidelityMaxValueEntropy max-value entropy search acquisition functions (#298).
    • Add subset_output functionality to (most) models (#324).
    • Add outcome transforms and input transforms (#321).
    • Add outcome_transform kwarg to model constructors for automatic outcome transformation and un-transformation (#327).
    • Add cost-aware utilities for cost-sensitive acquisiiton functions (#289).
    • Add DeterminsticModel and DetermisticPosterior abstractions (#288).
    • Add AffineFidelityCostModel (f838eacb4258f570c3086d7cbd9aa3cf9ce67904).
    • Add project_to_target_fidelity and expand_trace_observations utilities for use in multi-fidelity optimization (1ca12ac0736e39939fff650cae617680c1a16933).

    Performance Improvements

    • New prune_baseline option for pruning X_baseline in qNoisyExpectedImprovement (#287).
    • Do not use approximate MLL computation for deterministic fitting (#314).
    • Avoid re-evaluating the acquisition function in gen_candidates_torch (#319).
    • Use CPU where possible in gen_batch_initial_conditions to avoid memory issues on the GPU (#323).

    Bug fixes

    • Properly register NoiseModelAddedLossTerm in HeteroskedasticSingleTaskGP (671c93a203b03ef03592ce322209fc5e71f23a74).
    • Fix batch mode for MultiTaskGPyTorchModel (#316).
    • Honor propagate_grads argument in fantasize of FixedNoiseGP (#303).
    • Properly handle diag arg in LinearTruncatedFidelityKernel (#320).

    Other changes

    • Consolidate and simplify multi-fidelity models (#308).
    • New license header style (#309).
    • Validate shape of best_f in qExpectedImprovement (#299).
    • Support specifying observation noise explicitly for all models (#256).
    • Add num_outputs property to the Model API (#330).
    • Validate output shape of models upon instantiating acquisition functions (#331).

    Tests

    • Silence warnings outside of explicit tests (#290).
    • Enforce full sphinx docs coverage in CI (#294).
    Source code(tar.gz)
    Source code(zip)
  • v0.1.4(Oct 2, 2019)

    Breaking Changes

    • Require explicit output dimensions in BoTorch models (#238)
    • Make joint_optimize / sequential_optimize return acquisition function values (#149) [note deprecation notice below]
    • standardize now works on the second to last dimension (#263)
    • Refactor synthetic test functions (#273)

    New Features

    • Add qKnowledgeGradient acquisition function (#272, #276)
    • Add input scaling check to standard models (#267)
    • Add cyclic_optimize, convergence criterion class (#269)
    • Add settings.debug context manager (#242)

    Deprecations

    • Consolidate sequential_optimize and joint_optimize into optimize_acqf (#150)

    Bug fixes

    • Properly pass noise levels to GPs using a FixedNoiseGaussianLikelihood (#241) [requires gpytorch > 0.3.5]
    • Fix q-batch dimension issue in ConstrainedExpectedImprovement (6c067185f56d3a244c4093393b8a97388fb1c0b3)
    • Fix parameter constraint issues on GPU (#260)

    Minor changes

    • Add decorator for concatenating pending points (#240)
    • Draw independent sample from prior for each hyperparameter (#244)
    • Allow dim > 1111 for gen_batch_initial_conditions (#249)
    • Allow optimize_acqf to use q>1 for AnalyticAcquisitionFunction (#257)
    • Allow excluding parameters in fit functions (#259)
    • Track the final iteration objective value in fit_gpytorch_scipy (#258)
    • Error out on unexpected dims in parameter constraint generation (#270)
    • Compute acquisition values in gen_ functions w/o grad (#274)

    Tests

    • Introduce BotorchTestCase to simplify test code (#243)
    • Refactor tests to have monolithic cuda tests (#261)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Aug 10, 2019)

    Compatibility

    • Updates to support breaking changes in PyTorch to boolean masks and tensor comparisons (#224).
    • Require PyTorch >=1.2 (#225).
    • Require GPyTorch >=0.3.5 (itself a compatibility release).

    New Features

    • Add FixedFeatureAcquisitionFunction wrapper that simplifies optimizing acquisition functions over a subset of input features (#219).
    • Add ScalarizedObjective for scalarizing posteriors (#210).
    • Change default optimization behavior to use L-BFGS-B by for box constraints (#207).

    Bug fixes

    • Add validation to candidate generation (#213), making sure constraints are strictly satisfied (rater than just up to numerical accuracy of the optimizer).

    Minor changes

    • Introduce AcquisitionObjective base class (#220).
    • Add propagate_grads context manager, replacing the propagate_grads kwarg in model posterior() calls (#221)
    • Add batch_initial_conditions argument to joint_optimize() for warm-starting the optimization (ec3365a37ed02319e0d2bb9bea03aee89b7d9caa).
    • Add return_best_only argument to joint_optimize() (#216). Useful for implementing advanced warm-starting procedures.
    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Jul 10, 2019)

    Bug fixes

    • Avoid PyTorch bug resulting in bad gradients on GPU by requiring GPyTorch >= 0.3.4
    • Fixes to resampling behavior in MCSamplers (#204)

    Experimental Features

    • Linear truncated kernel for multi-fidelity bayesian optimization (#192)
    • SingleTaskMultiFidelityGP for GP models that have fidelity parameters (#181)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Jun 28, 2019)

    Breaking changes

    • rename botorch.qmc to botorch.sampling, move MC samplers from acquisition.sampler to botorch.sampling.samplers (#172)

    New Features

    • Add condition_on_observations and fantasize to the Model level API (#173)
    • Support pending observations generically for all MCAcqusitionFunctions (#176)
    • Add fidelity kernel for training iterations/training data points (#178)
    • Support for optimization constraints across q-batches (to support things like sample budget constraints) (2a95a6c3f80e751d5cf8bc7240ca9f5b1529ec5b)
    • Add ModelList <-> Batched Model converter (#187)
    • New test functions
      • basic: neg_ackley, cosine8, neg_levy, neg_rosenbrock, neg_shekel (e26dc7576c7bf5fa2ba4cb8fbcf45849b95d324b)
      • for multi-fidelity BO: neg_aug_branin, neg_aug_hartmann6, neg_aug_rosenbrock (ec4aca744f65ca19847dc368f9fee4cc297533da)

    Improved functionality:

    • More robust model fitting
      • Catch gpytorch numerical issues and return NaN to the optimizer (#184)
      • Restart optimization upon failure by sampling hyperparameters from their prior (#188)
      • Sequentially fit batched and ModelListGP models by default (#189)
      • Change minimum inferred noise level (e2c64fef1e76d526a33951c5eb75ac38d5581257)
    • Introduce optional batch limit in joint_optimize to increases scalability of parallel optimization (baab5786e8eaec02d37a511df04442471c632f8a)
    • Change constructor of ModelListGP to comply with GPyTorch’s IndependentModelList constructor (a6cf739e769c75319a67c7525a023ece8806b15d)
    • Use torch.random to set default seed for samplers (rather than random) to making sampling reproducible when setting torch.manual_seed (ae507ad97255d35f02c878f50ba68a2e27017815)

    Performance Improvements

    • Use einsum in LinearMCObjective (22ca29535717cda0fcf7493a43bdf3dda324c22d)
    • Change default Sobol sample size for MCAquisitionFunctions to be base-2 for better MC integration performance (5d8e81866a23d6bfe4158f8c9b30ea14dd82e032)
    • Add ability to fit models in SumMarginalLogLikelihood sequentially (and make that the default setting) (#183)
    • Do not construct the full covariance matrix when computing posterior of single-output BatchedMultiOutputGPyTorchModel (#185)

    Bug fixes

    • Properly handle observation_noise kwarg for BatchedMultiOutputGPyTorchModels (#182)
    • Fix a issue where f_best was always max for NoisyExpectedImprovement (410de585f07de0c66427d5066947e22227d11537)
    • Fix bug and numerical issues in initialize_q_batch (844dcd1dc8f418ae42639e211c6bb8e31a75d8bf)
    • Fix numerical issues with inv_transform for qMC sampling (#162)

    Other

    • Bump GPyTorch minimum requirement to 0.3.3
    Source code(tar.gz)
    Source code(zip)
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022