Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Overview

Neural Style Transfer & Neural Doodles

Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+

INetwork implements and focuses on certain improvements suggested in Improving the Neural Algorithm of Artistic Style.

Color Preservation is based on the paper Preserving Color in Neural Artistic Style Transfer.

Masked Style Transfer is based on the paper Show, Divide and Neural: Weighted Style Transfer

Colaboratory Support

This codebase can now be run directly from colaboratory using the following link, or by opening NeuralStyleTransfer.ipynb and visiting the Colab link.

Colab link supports almost all of the additional arguments, except of the masking ones. They will probably be added at a later date.

NOTE : Make sure you use a GPU in Colab or else the notebook will fail. To change Runtimes : Runtime -> Change Runtime type ->. Here select Python 3 and GPU as the hardware accelerator.

Guide

See the guide for details regarding how to use the script to achieve the best results

It also explains how to setup Theano (with GPU support) on both Windows and Linux. Theano on Windows is a long and tedious process, so the guide can speed up the process by simply letting you finish all the steps in the correct order, so as not to screw up the finicky Theano + Windows setup.

The Script Helper program can be downloaded from the Releases tab of this repository, Script Helper Releases. Extract it into any folder and run the Neural Style Transfer.exe program. On Linux, you will need to install Mono C# to run the script helper program.

Examples

Single Style Transfer

blue moon lake starry night

Results after 100 iterations using the INetwork
blue moon lake style transfer

DeepArt.io result (1000 iterations and using improvements such as Markov Random Field Regularization)

Style Transfer with Color Preservation

An example of color preservation with Kinkaku-ji, a Buddhist temple, as the content image and Monet's "Water Lilies" as the art style:


Kinkaku color preservation kinkaku style transfer

As an example, here are two images of the Sagano Bamboo Forest with the "pattened-leaf" style, with and without color preservation

sagano bamboo forest style transfer color preservation sagano bamboo forest style transfer

Color preservation can also be done using a mask. Using the color_transfer.py script and supplying a mask image, in which white regions will allow the content's colors to be transfered and black regions will keep the style-generated colors.

Below, the content image is "Sunlit Mountain", with the style image as "Seated Nude" by Picasso. Notice that the color preservation mask ensures that color transfer occurs only for the sky region, while the mountains are untouched.

Style Interpolation

Style weight and Content weight can be manipulated to get drastically different results.

Leonid Afremov's "Misty Mood" is the style image and "Dipping Sun" is the content image :

Style=1, Content=1000 Style=1, Content=1 Style=1000, Content=1

Multiple Style Transfer

The next few images use the Blue Moon Lake as a content image and Vincent Van Gogh's "Starry Night" and Georgia O'Keeffe's "Red Canna" as the style images:

The below are the results after 50 iterations using 3 different style weights :

Starry Night : 1.0, Red Canna 0.2 Starry Night : 1.0, Red Canna 0.4 Starry Night : 1.0, Red Canna 1.0

Masked Style Transfer

Supplying an additional binary mask for each style, we can apply the style to a selected region and preserve the content in other regions.We can also use multiple masks to apply 2 different styles in 2 different regions of the same content image.

Note that with the mask_transfer.py script, a single content image can be masked with 1 mask to preserve content in blackend regions and preserve style transfer in whitened regions in the generated image. Currently, only content can be transfered in a post processed manner.

"The Starry Night" is used as the style image in the below images. The mask tries to preserve the woman's shape and color, while applying the style to all other regions. Results are very good, as "The Starry Night" has a tendency to overpower the content shape and color.
dawn sky anime

dawn sky style transfer anime


Another example of masked style transfer is provided below. "Winter Wolf" is used as the content image and "Bamboo Forest" is used as the style image. The mask attempts to preserve the darkened cloudy sky, and apply the style only to the mountains and the wolf itself.

winter wolf style transfer


These last few images use "Cherry Blossoms" as the content image, and uses two styles : "Candy Style" and Monet's "Water Lillies" using their respective masks to create an image with unique results.

Silhouette Transfer

Using Masked Transfer, one can post process image silhouettes to generate from scratch artwork that is sharp, clear and manipulates the style to conform to the shape of the silhouette itself.

First we discuss the use of a silhouette of the content vs the content image itself. A silhouette offers a chance to generate new artwork in the artistic vein of the style, while conforming only to the shape of the content, and disregarding the content itself. Combined with post process masking, it is easy to generate artwork similar to the style image itself.

For this image, Starry Night was used as the Style Image.

Content Mask Generated

For this example, we use "Blue Strokes" as the style image

Content Style

Texture Transfer

Utilizing a style image with a very distinctive texture, we can apply this texture to the content without any alterating in the algorithm. It is to be noted that the style image must possess a very strong texture to transfer correctly.

The below is an example of the content image "Aurea Luna", with the texture images which are available in the /style/metals directory, which are Silver and Gold. Color Preservation is applied to both images, and a mask is applied on the "Burnt Gold" image to style just the circle and not the entire square image.

aurea luna golden moon clow reed

molten silver moon burnt gold moon

All Transfer Techniques

Each of these techniques can be used together, or in stages to generate stunning images.

In the folowing image, I have used Masked style transfer in a multi scale style transfer technique - with scales of 192x192, 384x384, 768x768, applied a super resolution algorithm (4x and then downscaled to 1920x1080), applied color transfer and mask transfer again to sharpen the edges, used a simple sharpening algorithm and then finally denoise algorithm.

ancient city japanese

Result :
ancient city japanese

Various results with / without Color Preservation

Example of various styles (with and without color preservation). Images of the "Lost Grounds" from .Hack G.U.

Neural Doodle Examples

Renoit Style + Content Image

Monet Style + Doodle Creation

Van Gogh + Doodle Creation

Weights (VGG 16)

Weights are now automatically downloaded and cached in the ~/.keras (Users//.keras for Windows) folder under the 'models' subdirectory. The weights are a smaller version which include only the Convolutional layers without Zero Padding Layers, thereby increasing the speed of execution.

Note: Requires the latest version of Keras (1.0.7+) due to use of new methods to get files and cache them into .keras directory.

Modifications to original implementation :

  • Uses 'conv5_2' output to measure content loss. Original paper utilizes 'conv4_2' output

  • Initial image used for image is the base image (instead of random noise image) This method tends to create better output images, however parameters have to be well tuned. Therefore their is a argument 'init_image' which can take the options 'content' or 'noise'

  • Can use AveragePooling2D inplace of MaxPooling2D layers The original paper uses AveragePooling for better results, but this can be changed to use MaxPooling2D layers via the argument --pool_type="max". By default MaxPooling is used, since if offers sharper images, but AveragePooling applies the style better in some cases (especially when style image is the "Starry Night" by Van Gogh).

  • Style weight scaling

  • Rescaling of image to original dimensions, using lossy upscaling present

  • Maintain aspect ratio of intermediate and final stage images, using lossy upscaling

Improvements in INetwork

  • Improvement 3.1 in paper : Geometric Layer weight adjustment for Style inference
  • Improvement 3.2 in paper : Using all layers of VGG-16 for style inference
  • Improvement 3.3 in paper : Activation Shift of gram matrix
  • Improvement 3.5 in paper : Correlation Chain

These improvements are almost same as the Chain Blurred version, however a few differences exist :

  • Blurring of gram matrix G is not used, as in the paper the author concludes that the results are often not major, and convergence speed is greatly diminished due to very complex gradients.
  • Only one layer for Content inference instead of using all the layers as suggested in the Chain Blurred version.
  • Does not use CNN MRF network, but applies these modifications to the original algorithm.
  • All of this is applied on the VGG-16 network, not on the VGG-19 network. It is trivial to extrapolate this to the VGG-19 network. Simply adding the layer names to the feature_layers list will be sufficient to apply these changes to the VGG-19 network.

Script Helper

It is a C# program written to more easily generate the arguments for the python script Network.py or INetwork.py (Using Neural Style Transfer tab) and neural_doodle.py or improved_neural_doodle.py script (Using Neural Doodle Tab)

Benefits

  • Allows Style Transfer, Neural Doodles, Color Transfer and Masked Style Transfer easily
  • Automatically executes the script based on the arguments.
  • Easy selection of images (Content, Style (Multiple Selection allowed), Output Prefix)
  • Easy parameter selection
  • Easily generate argument list, if command line execution is preferred.
  • Creates log folders for each execution so settings can be preserved
  • Runs on Windows (Native) and Linux (Using Mono)

To use multiple style images, when the image choice window opens, select all style images as needed. Pass multiple style weights by using a space between each style weight in the parameters section.

Usage

Neural Style Transfer

Both Network.py and INetwork.py have similar usage styles, and share all parameters.

Network.py / INetwork.py

python network.py/inetwork.py "/path/to/content image" "path/to/style image" "result prefix or /path/to/result prefix"

To pass multiple style images, after passing the content image path, seperate each style path with a space

python inetwork.py "/path/to/content image" "path/to/style image 1" "path/to/style image 2" ... "result prefix or /path/to/result prefix" --style_weight 1.0 1.0 ... 

There are various parameters discussed below which can be modified to alter the output image. Note that many parameters require the command to be enclosed in double quotes ( " " ).

Example:

python inetwork.py "/path/to/content image" "path/to/style image" "result prefix or /path/to/result prefix" --preserve_color "True" --pool_type "ave" --rescale_method "bicubic" --content_layer "conv4_2"

To perform color preservation on an already generated image, use the color_transform.py as below. It will save the image in the same folder as the generated image with "_original_color" suffix.

python color_transfer.py "path/to/content/image" "path/to/generated/image"

A mask can also be supplied to color preservation script, using the --mask argument, where the white region signifies that color preservation should be done there, and black regions signify the color should not be preserved here.

python color_transfer.py "path/to/content/image" "path/to/generated/image" --mask "/path/to/mask/image"

A note on mask images:

  • They should be binary images (only black and white)
  • White represents parts of the image that you want style transfer to occur
  • Black represents parts of the image that you want to preserve the content
  • Be careful of the order in which mask images are presented in Multi Style Multi Mask generation. They have a 1 : 1 mapping between style images and style masks.
  • When using the Script Helper program, it may happen that the masks are being ordered incorrectly due to name-wise sorting. Therefore, rename the masks in alphabetic order to correct this flaw.

As a general example, here is the list of parameters to generate a multi style multi mask image:

python network.py "Japanese-cherry-widescreen-wallpaper-Picture-1366x768.jpg" "candy-style.jpg" "water-lilies-1919-2.jpg" \
"Cherry Blossom" --style_masks "cherry-blossom-1.jpg" "cherry-blossom-2.jpg" --content_weight 5 --style_weight 1.0 1.0 \
--num_iter 20 --model "vgg16" --content_loss_type 0

Like Color Transfer, single mask style transfer can also be applied as a post processing step instead of directly doing so in the style transfer script. You can preserve some portion of the content image in the generated image using the post processing script mask_transfer.py.

Example:

python mask_transfer.py "path/to/content/image" "path/to/generated/image" "path/to/content/mask"

Neural Doodles

Both the neural_doodle.py and improved_neural_doodle.py script share similar usage styles.

neural_doodle.py & improved_neural_doodle.py

python neural_doodle.py --nlabels -style-image --style-mask --target-mask --content-image --target-image-prefix

Example 1 : Doodle using a style image, style mask and target mask (from keras examples)

python neural_doodle.py --nlabels 4 --style-image Monet/style.png \
    --style-mask Monet/style_mask.png --target-mask Monet/target_mask.png \
    --target-image-prefix generated/monet

Example 2: Doodle using a style image, style mask, target mask and an optional content image.

 python neural_doodle.py --nlabels 4 --style-image Renoir/style.png \
    --style-mask Renoir/style_mask.png --target-mask Renoir/target_mask.png \
    --content-image Renoir/creek.jpg \
    --target-image-prefix generated/renoir

Multiple phases Example : Doodle using a style image, style mask, target mask and using it multiple times to acheive better results.

  • Assume that an image has a size (400 x 600).
  • Divide the image size by 4 (100 x 125)
  • Create 1st doodle according to the below script #1 (--img_size 100)
  • Create 2nd doodle according to the below script #2 (Note that we pass 1st doodle as content image here) (--img_size 200)
  • Create 3rd and last doodle acc to below script #3 (Note we pass 2nd doodle as content image here) (Do not put img_size parameter)
# Script 1
python improved_neural_doodle.py --nlabels 4 --style-image srcl.jpg --style-mask srcl-m.png --target-mask dst-m.png  --target-image-prefix ./doodle3-100 --num_iter 50 --img_size 100 --min_improvement 5.0

# Script 2
python improved_neural_doodle.py --nlabels 4 --style-image srcl.jpg --style-mask srcl-m.png --target-mask dst-m.png  --target-image-prefix ./doodle3-200 --num_iter 50 --content-image ./doodle3-100_at_iteration_XXXX.png --img_size 200 --min_improvement 2.5

############# Replace XXXX by last iteration number ################

# Script 3 
python improved_neural_doodle.py --nlabels 4 --style-image srcl.jpg --style-mask srcl-m.png --target-mask dst-m.png  --target-image-prefix ./doodle3-500 --num_iter 50 --content-image ./doodle3-200_at_iteration_XXXX.png

############# Replace XXXX by last iteration number ################

Color Transfer (Post Processing)

Color transfer can be performed after the stylized image has already been generated. This can be done via the color_transfer.py script or via the Color Transfer tab in the Script Helper. Note that the script will save the image in the same folder as the generated image with "_original_color" suffix.

Example:

python color_transfer.py "path/to/content/image" "path/to/generated/image"

A mask can also be supplied to color preservation script, using the --mask argument, where the white region signifies that color preservation should be done there, and black regions signify the color should not be preserved here.

python color_transfer.py "path/to/content/image" "path/to/generated/image" --mask "/path/to/mask/image"

Using the --hist_match parameter set to 1, it will perform histogram color matching instead of direct color transfer

python color_transfer.py "path/to/content/image" "path/to/generated/image" --hist_match 1

Please note that for masks for color preservation and for style transfer have different representations. Color preservations will preserve white areas as content colors, and mask transfer will preserve black areas as content image.

Masked Style Transfer (Post Processing)

If the general requirement is to preserve some portions of the content in the stylized image, then it can simply be done as a post processing step using the mask_transfer.py script or the Mask Transfer tab of the Script Helper.

For now, only the content can be preserved (by coloring the area black in the mask). To perform multi style multi mask style transfer, you must supply the styles and masks to the neural style script and let it run for several iterations. This cannot be done as a post processing step.

Example:

python mask_transfer.py "path/to/content/image" "path/to/generated/image" "path/to/content/mask"

Parameters (Neural Style)

--style_masks : Multiple style masks may be provided for masking certain regions of an image for style transfer. Number of 
  style_weight parameters must match number of style masks.
--color_mask : A single color mask, which defines the region where the color must be preserved. 

--image_size : Allows to set the Gram Matrix size. Default is 400 x 400, since it produces good results fast. 
--num_iter : Number of iterations. Default is 10. Test the output with 10 iterations, and increase to improve results.
--init_image : Can be "content", "noise" or "gray". Default is "content", since it reduces reproduction noise. "gray" is useful when you want only the color of the style to be used in the image.
--pool_type : Pooling type. MaxPooling ("max") is default. For smoother images, use AveragePooling ("ave").

--model : Can be "vgg16" or "vgg19". Changes between use of VGG 16 or VGG 19 model.
--content_loss_type : Can be 0, 1 or 2. 
                      0 does not add any scaling of the loss. 
                      1 = 1 / (2 * sqrt(channels) * sqrt(width * height))
                      2 = 1 / (channels * width * height)
--preserve_color : Preserves the original color space of the content image, while applying only style. Post processing technique on final image, therefore does not harm quality of style.
--min_improvement : Sets the minimum improvement required to continue training. Default is 0.0, indicating no minimum threshold. Advised values are 0.05 or 0.01

--content_weight : Weightage given to content in relation to style. Default if 0.025
--style_weight : Weightage given to style. Default is 1. When using multiple styles, seperate each style weight with a space
--style_scale : Scales the style_weight. Default is 1. 
--total_variation_weight : Regularization factor. Smaller values tend to produce crisp images, but 0 is not useful. Default = 8.5E-5

--rescale_image : Rescale image to original dimensions after each iteration. (Bilinear upscaling)
--rescale_method : Rescaling algorithm. Default is bilinear. Options are nearest, bilinear, bicubic and cubic.
--maintain_aspect_ratio : Rescale the image just to the original aspect ratio. Size will be (gram_matrix_size, gram_matrix_size * aspect_ratio). Default is True
--content_layer : Selects the content layer. Paper suggests conv4_2, but better results can be obtained from conv5_2. Default is conv5_2.

Parameters (Neural Doodle)

--nlabels : Number of colors or labels in mask image
--image_size : Allows to set the Gram Matrix size. Default is -1, which means that it uses style image size automatically. 
--num_iter : Number of iterations. Default is 10. Test the output with 10 iterations, and increase to improve results.
--preserve_color : Preserves the original color space of the content image, while applying only style. Post processing technique on final image, therefore does not harm quality of style. Works only when using content image for guided style transfer
--min_improvement : Minimum improvement in percentage required to continue training. Set to 0.0 to disable.

--content_weight : Weightage given to content in relation to style. Default if 0.1
--style_weight : Weightage given to style in relation to content. Default is 1. 
--total_variation_weight : Regularization factor. Smaller values tend to produce crisp images, but 0 is not useful. Default = 8.5E-5
--region_style_weight : Weight for region style regularization. Keep it set to 1.0 unless testing for experimental purposes.

Parameters (Color Transfer)

--masks : Optional, performs masked color transfer
--hist_match : Performs histogram color matching if set to 1. Default is 0.

Network.py in action

Alt Text

Requirements

  • Theano / Tensorflow
  • Keras
  • CUDA (GPU) -- Recommended
  • CUDNN (GPU) -- Recommended
  • Numpy
  • h5py
  • Scipy + PIL + Scikit-image

Speed

On a 980M GPU, the time required for each epoch depends on mainly image size (gram matrix size) :

For a 400x400 gram matrix, each epoch takes approximately 8-10 seconds.
For a 512x512 gram matrix, each epoch takes approximately 15-18 seconds.
For a 600x600 gram matrix, each epoch takes approximately 24-28 seconds.

For Masked Style Transfer, the speed is now same as if using no mask. This was acheived by preventing gradient computation of the mask multiplied with the style and content features.

For Multiple Style Transfer, INetwork.py requires slightly more time (~2x single style transfer as shown above for 2 styles, ~3x for 3 styles and so on). Results are better with INetwork.py in multiple style transfer.

For Multi Style Multi Mask Style Transfer, the speed is now same as if using multiple styles only. It was acheived by preventing gradient computation of the mask multiplied with the style and content features.

  • For multi style multi mask network, Network.py requires roughly 24 (previously 72) seconds per iteration, whereas INetwork.py requires 87 (previously 248) seconds per iteration

Issues

  • Due to usage of content image as initial image, output depends heavily on parameter tuning.
    Test to see if the image is appropriate in the first 10 epochs, and if it is correct, increase the number of iterations to smoothen and improve the quality of the output.
  • Due to small gram sizes, the output image is usually small.
    To correct this, use the implementations of this paper "Image Super-Resolution Using Deep Convolutional Networks" http://arxiv.org/abs/1501.00092 to upscale the images with minimal loss.
    Some implementations of the above paper for Windows : https://github.com/lltcggie/waifu2x-caffe/releases
    (Download the waifu2x-caffe.zip and extract, program supports English)
  • Implementation of Markov Random Field Regularization and Patch Match algorithm are currently being tested. MRFNetwork.py contains the basic code, which need to be integrated to use MRF and Patch Match as in Image Analogies paper Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
Comments
  • Doodle giving some odd result

    Doodle giving some odd result

    Running:

    python improved_neural_doodle.py --nlabels 4 --style-image ../in/vg/srcl.jpg --style-mask ../in/vg/srcl-m.png --target-mask ../in/vg/dst-m.png --target-image-prefix ./doodle1

    Result is:

    http://imgur.com/a/0CYLB

    Currently trying with tweaked parameters:

    python improved_neural_doodle.py --nlabels 4 --style-image ../in/vg/srcl.jpg --style-mask ../in/vg/srcl-m.png --target-mask ../in/vg/dst-m.png --target-image-prefix ./doodle1 --content_weight 0 --num_iter 50

    opened by bmaltais 30
  • network.py error

    network.py error

    Hi there ! I've downloaded your Neural-Style_Transfer,and try to transfer some pictures. but got an error while computing. could you help to take a look, thanks a lot. capture

    opened by beckw 16
  • usage of maintain aspect ratio

    usage of maintain aspect ratio

    I may be doing something wrong here, but I also see the latest commit mentions a change to maintain_aspect_ratio. Using the latest build all images are coming out square. I've tried passing --maintain_aspect_ratio 1 as well, but no luck.

    If someone can confirm it isn't just me being dumb, this line in the last commit may be the culprit.

    opened by 7yl4r 13
  • having trouble getting the script helper to run

    having trouble getting the script helper to run

    mono and wine are both installed

    [email protected]:~/script_helper$ ./Neural\ Style\ Transfer.exe
    
    Unhandled Exception:
    System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. ---> System.ComponentModel.Win32Exception: No valid icon entry were found.
      at System.Drawing.Icon.InitFromStreamWithSize (System.IO.Stream stream, System.Int32 width, System.Int32 height) [0x001f3] in <c8087fd0c5714edeb9fb2de6813dd471>:0 
      at System.Drawing.Icon..ctor (System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext context) [0x00095] in <c8087fd0c5714edeb9fb2de6813dd471>:0 
      at (wrapper managed-to-native) System.Reflection.MonoCMethod.InternalInvoke(System.Reflection.MonoCMethod,object,object[],System.Exception&)
      at System.Reflection.MonoCMethod.InternalInvoke (System.Object obj, System.Object[] parameters) [0x00002] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
       --- End of inner exception stack trace ---
      at System.Reflection.MonoCMethod.InternalInvoke (System.Object obj, System.Object[] parameters) [0x00014] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Reflection.MonoCMethod.DoInvoke (System.Object obj, System.Reflection.BindingFlags invokeAttr, System.Reflection.Binder binder, System.Object[] parameters, System.Globalization.CultureInfo culture) [0x0007a] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Reflection.MonoCMethod.Invoke (System.Object obj, System.Reflection.BindingFlags invokeAttr, System.Reflection.Binder binder, System.Object[] parameters, System.Globalization.CultureInfo culture) [0x0002f] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Reflection.MethodBase.Invoke (System.Object obj, System.Object[] parameters) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Reflection.RuntimeConstructorInfo.SerializationInvoke (System.Object target, System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext context) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.ObjectManager.CompleteISerializableObject (System.Object obj, System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext context) [0x00059] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.ObjectManager.FixupSpecialObject (System.Runtime.Serialization.ObjectHolder holder) [0x00088] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.ObjectManager.DoFixups () [0x0005a] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.ObjectReader.Deserialize (System.Runtime.Remoting.Messaging.HeaderHandler handler, System.Runtime.Serialization.Formatters.Binary.__BinaryParser serParser, System.Boolean fCheck, System.Boolean isCrossAppDomain, System.Runtime.Remoting.Messaging.IMethodCallMessage methodCallMessage) [0x00077] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream, System.Runtime.Remoting.Messaging.HeaderHandler handler, System.Boolean fCheck, System.Boolean isCrossAppDomain, System.Runtime.Remoting.Messaging.IMethodCallMessage methodCallMessage) [0x000a2] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream, System.Runtime.Remoting.Messaging.HeaderHandler handler, System.Boolean fCheck, System.Runtime.Remoting.Messaging.IMethodCallMessage methodCallMessage) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream, System.Runtime.Remoting.Messaging.HeaderHandler handler, System.Boolean fCheck) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream, System.Runtime.Remoting.Messaging.HeaderHandler handler) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceReader.DeserializeObject (System.Int32 typeIndex) [0x00019] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceReader._LoadObjectV2 (System.Int32 pos, System.Resources.ResourceTypeCode& typeCode) [0x0035c] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceReader.LoadObjectV2 (System.Int32 pos, System.Resources.ResourceTypeCode& typeCode) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceReader.LoadObject (System.Int32 pos, System.Resources.ResourceTypeCode& typeCode) [0x00022] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.RuntimeResourceSet.GetObject (System.String key, System.Boolean ignoreCase, System.Boolean isString) [0x000be] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.RuntimeResourceSet.GetObject (System.String key, System.Boolean ignoreCase) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceManager.GetObject (System.String name, System.Globalization.CultureInfo culture, System.Boolean wrapUnmanagedMemStream) [0x0008e] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceManager.GetObject (System.String name) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at Neural_Dream.MainForm.InitializeComponent () [0x03ec5] in <e3cb198a3d414b4aaefce478acd0faa0>:0 
      at Neural_Dream.MainForm..ctor () [0x00011] in <e3cb198a3d414b4aaefce478acd0faa0>:0 
      at (wrapper remoting-invoke-with-check) Neural_Dream.MainForm..ctor()
      at Neural_Dream.Program.Main () [0x0000b] in <e3cb198a3d414b4aaefce478acd0faa0>:0 
    [ERROR] FATAL UNHANDLED EXCEPTION: System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. ---> System.ComponentModel.Win32Exception: No valid icon entry were found.
      at System.Drawing.Icon.InitFromStreamWithSize (System.IO.Stream stream, System.Int32 width, System.Int32 height) [0x001f3] in <c8087fd0c5714edeb9fb2de6813dd471>:0 
      at System.Drawing.Icon..ctor (System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext context) [0x00095] in <c8087fd0c5714edeb9fb2de6813dd471>:0 
      at (wrapper managed-to-native) System.Reflection.MonoCMethod.InternalInvoke(System.Reflection.MonoCMethod,object,object[],System.Exception&)
      at System.Reflection.MonoCMethod.InternalInvoke (System.Object obj, System.Object[] parameters) [0x00002] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
       --- End of inner exception stack trace ---
      at System.Reflection.MonoCMethod.InternalInvoke (System.Object obj, System.Object[] parameters) [0x00014] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Reflection.MonoCMethod.DoInvoke (System.Object obj, System.Reflection.BindingFlags invokeAttr, System.Reflection.Binder binder, System.Object[] parameters, System.Globalization.CultureInfo culture) [0x0007a] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Reflection.MonoCMethod.Invoke (System.Object obj, System.Reflection.BindingFlags invokeAttr, System.Reflection.Binder binder, System.Object[] parameters, System.Globalization.CultureInfo culture) [0x0002f] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Reflection.MethodBase.Invoke (System.Object obj, System.Object[] parameters) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Reflection.RuntimeConstructorInfo.SerializationInvoke (System.Object target, System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext context) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.ObjectManager.CompleteISerializableObject (System.Object obj, System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext context) [0x00059] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.ObjectManager.FixupSpecialObject (System.Runtime.Serialization.ObjectHolder holder) [0x00088] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.ObjectManager.DoFixups () [0x0005a] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.ObjectReader.Deserialize (System.Runtime.Remoting.Messaging.HeaderHandler handler, System.Runtime.Serialization.Formatters.Binary.__BinaryParser serParser, System.Boolean fCheck, System.Boolean isCrossAppDomain, System.Runtime.Remoting.Messaging.IMethodCallMessage methodCallMessage) [0x00077] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream, System.Runtime.Remoting.Messaging.HeaderHandler handler, System.Boolean fCheck, System.Boolean isCrossAppDomain, System.Runtime.Remoting.Messaging.IMethodCallMessage methodCallMessage) [0x000a2] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream, System.Runtime.Remoting.Messaging.HeaderHandler handler, System.Boolean fCheck, System.Runtime.Remoting.Messaging.IMethodCallMessage methodCallMessage) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream, System.Runtime.Remoting.Messaging.HeaderHandler handler, System.Boolean fCheck) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream, System.Runtime.Remoting.Messaging.HeaderHandler handler) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceReader.DeserializeObject (System.Int32 typeIndex) [0x00019] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceReader._LoadObjectV2 (System.Int32 pos, System.Resources.ResourceTypeCode& typeCode) [0x0035c] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceReader.LoadObjectV2 (System.Int32 pos, System.Resources.ResourceTypeCode& typeCode) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceReader.LoadObject (System.Int32 pos, System.Resources.ResourceTypeCode& typeCode) [0x00022] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.RuntimeResourceSet.GetObject (System.String key, System.Boolean ignoreCase, System.Boolean isString) [0x000be] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.RuntimeResourceSet.GetObject (System.String key, System.Boolean ignoreCase) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceManager.GetObject (System.String name, System.Globalization.CultureInfo culture, System.Boolean wrapUnmanagedMemStream) [0x0008e] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at System.Resources.ResourceManager.GetObject (System.String name) [0x00000] in <9bbab8f8a2a246e98480e70b0839fd67>:0 
      at Neural_Dream.MainForm.InitializeComponent () [0x03ec5] in <e3cb198a3d414b4aaefce478acd0faa0>:0 
      at Neural_Dream.MainForm..ctor () [0x00011] in <e3cb198a3d414b4aaefce478acd0faa0>:0 
      at (wrapper remoting-invoke-with-check) Neural_Dream.MainForm..ctor()
      at Neural_Dream.Program.Main () [0x0000b] in <e3cb198a3d414b4aaefce478acd0faa0>:0 
    
    opened by StoneCypher 11
  • GPU vs CPU

    GPU vs CPU

    How do I know if it is using the GPU instead of the CPU. Right now it takes 165s for 1 epoch using default 400x400 matrix... is this normal?

    I usually run 50 iterations in neural-style in about 15 seconds on the same machine.

    opened by bmaltais 10
  • ImportError: cannot import name 'imread' from 'scipy.misc'

    ImportError: cannot import name 'imread' from 'scipy.misc'

    py Network.py "./images/inputs/1.jpg" "./images/inputs/style.jpg" C:\Users\flamesoff\AppData\Local\Programs\Python\Python37\lib\site-packages\numpy\_distributor_init.py:32: UserWarning: loaded more than 1 DLL from .libs: C:\Users\flamesoff\AppData\Local\Programs\Python\Python37\lib\site-packages\numpy\.libs\libopenblas.IPBC74C7KURV7CB2PKT5Z5FNR3SIBV4J.gfortran-win_amd64.dll C:\Users\flamesoff\AppData\Local\Programs\Python\Python37\lib\site-packages\numpy\.libs\libopenblas.TXA6YQSD3GCQQC22GEQ54J2UDCXDXHWN.gfortran-win_amd64.dll stacklevel=1) Traceback (most recent call last): File "Network.py", line 5, in <module> from scipy.misc import imread, imresize, imsave, fromimage, toimage ImportError: cannot import name 'imread' from 'scipy.misc' (C:\Users\flamesoff\AppData\Local\Programs\Python\Python37\lib\site-packages\scipy\misc\__init__.py)

    Everything is installed in accordance with requirements from readme.md.

    opened by f1am3d 8
  • "IndexError: tuple index out of range"

    I'm running the sample images (using either the theano or tensorflow backends) and get the following error: IndexError: tuple index out of range

    ~/arts/Neural-Style-Transfer$ python Network.py images/inputs/content/Japanese-cherry-widescreen-wallpaper-Picture-1366x768.jpg images/inputs/style/candy-style.jpg images/inputs/style/water-lilies-1919-2.jpg "Cherry Blossom" --style_masks images/inputs/mask/cherry-blossom-1.jpg images/inputs/mask/cherry-blossom-2.jpg --content_weight 5 --style_weight 1.0 1.0 --num_iter 20 --model vgg16 --content_loss_type 0
    Using TensorFlow backend.
    Traceback (most recent call last):
      File "Network.py", line 319, in <module>
        x = Convolution2D(64, (3, 3), activation='relu', name='conv1_1', padding='same')(ip)
      File "/home/artcade/anaconda2/lib/python2.7/site-packages/keras/engine/topology.py", line 615, in __call__
        output_shape = self.compute_output_shape(input_shape)
      File "/home/artcade/anaconda2/lib/python2.7/site-packages/keras/layers/convolutional.py", line 193, in compute_output_shape
        self.kernel_size[i],
    IndexError: tuple index out of range
    

    I've installed the following versions of CUDA and cuDNN:

    cuda_8.0.61_375.26_linux.run
    cudnn-8.0-linux-x64-v6.0.tgz
    

    I'm running this on Linux, on an NVidia 1080 GPU.

    I suspect I'm doing something simple but wrong. Any idea where to look?

    opened by canadaduane 8
  • aspect ratio

    aspect ratio

    Hi, nice code and thank you for sharing it! Why do you say (and require) that Gram matrix is square? In fact your code seems to work even when this requirement is dropped out (thanks for keeping widths and heights separate).

    opened by ink1 8
  • Image only blurs when run through INetwork

    Image only blurs when run through INetwork

    I am trying to run the INetwork keras code, but am running into an issue where the image only seems to blur, but does not take any style from the other image. I have tried tweaking the parameters as suggested in your guide to no seeming effect.

    The images that I am using are haydog

    for the source and

    haystacks-in-provence

    for the style.

    The most recent parameters attempted are

    content weight: .025 style_weight: 1.0 style_scale: 1 tv_weight: .000085 content layer conv5_2 max pooling

    The image looks like this after 1 haydoggie_at_iteration_10 0 iterations.

    opened by cversteeg 8
  • Not able to reproduce the results

    Not able to reproduce the results

    Hi,

    With all default settings in the jupyter notebook, the generated results does not look any similar to the results you posted. I did not use google.colab to import content and style images, instead, the image are directly set by CONTENT_IMAGE_FN = "../deepArt.ai/test/blue-moon-lake.jpg" STYLE_IMAGE_FN = "../deepArt.ai/test/starry_night.jpg"

    gen_at_iteration_10

    opened by tj198505 7
  • Invalid float

    Invalid float

    1. Run Programm
    2. Programm say "XXX not in standard format"
    3. Сhange all "." to ","
    4. ???
    5. python say "invalid float value" proofpics

    Fix it please.

    opened by Ratinod 7
  • RuntimeError: tf.gradients is not supported when eager execution is enabled. Use tf.GradientTape instead.

    RuntimeError: tf.gradients is not supported when eager execution is enabled. Use tf.GradientTape instead.

    this occurs when i try to run !python {dir_path}/{NETWORK} {CONTENT_IMAGE_FN} {STYLE_IMAGE_FN} {RESULT_PREFIX}
    --image_size {IMAGE_SIZE} --content_weight {CONTENT_WEIGHT} --style_weight
    {STYLE_WEIGHT} --style_scale {STYLE_SCALE} --total_variation_weight
    {TOTAL_VARIATION_WEIGHT} --content_loss_type {CONTENT_LOSS_TYPE} --num_iter
    {NUM_ITERATIONS} --model {MODEL} --rescale_image {RESCALE_IMAGE}
    --maintain_aspect_ratio {MAINTAIN_ASPECT_RATIO} --content_layer {CONTENT_LAYER}
    --init_image {INITIALIZATION_IMAGE} --pool_type {POOLING_TYPE} --preserve_color
    {PRESERVE_COLOR} --min_improvement {MIN_IMPROVEMENT}

    opened by rachidd12 2
  • convert_all_kernels_in_model removed from tf2

    convert_all_kernels_in_model removed from tf2

    It appears this deprecated function has been removed at some point after 2020-06-23, and this no longer works with Tensorflow 2.4.0

    from tensorflow.keras.utils import convert_all_kernels_in_model
    ImportError: cannot import name 'convert_all_kernels_in_model'
    
    opened by olaviinha 1
  • RuntimeError: tf.gradients is not supported when eager execution is enabled. Use tf.GradientTape instead.

    RuntimeError: tf.gradients is not supported when eager execution is enabled. Use tf.GradientTape instead.

    hi i was run this on colab and when i run this cell:

    !python {dir_path}/{NETWORK} {CONTENT_IMAGE_FN} {STYLE_IMAGE_FN} {RESULT_PREFIX} \
      --image_size {IMAGE_SIZE} --content_weight {CONTENT_WEIGHT} --style_weight \
      {STYLE_WEIGHT} --style_scale {STYLE_SCALE} --total_variation_weight \
      {TOTAL_VARIATION_WEIGHT} --content_loss_type {CONTENT_LOSS_TYPE} --num_iter \
      {NUM_ITERATIONS} --model {MODEL} --rescale_image {RESCALE_IMAGE} \
      --maintain_aspect_ratio {MAINTAIN_ASPECT_RATIO} --content_layer {CONTENT_LAYER} \
      --init_image {INITIALIZATION_IMAGE} --pool_type {POOLING_TYPE} --preserve_color \
      {PRESERVE_COLOR} --min_improvement {MIN_IMPROVEMENT}
    

    i got this error: RuntimeError: tf.gradients is not supported when eager execution is enabled. Use tf.GradientTape instead. can someone tell me where i can use tf.GradientTape? thx

    opened by Garfield8377 5
  • Saving model

    Saving model

    Hello,

    I use your INetwork to stylized my image but it takes a long time to run 100 epoch. I want to do this once and then just apply the network to stylized others images.

    Is it possible to save the model and use it after ? How to do this ?

    Thanks a lot for your response.

    opened by crenaudineau1 0
  • ValueError: Tensor conversion requested dtype float32 for Tensor with dtype int32: 'Tensor(

    ValueError: Tensor conversion requested dtype float32 for Tensor with dtype int32: 'Tensor("strided_slice_8:0", shape=(), dtype=int32)'

    Hi! I've tried to run your code, it works well with iNetwork.py, but have an issue with neural_doodle.py(improved_neural_doodle.py the same). The problem is:

    !python /content/Neural-Style-Transfer/improved_neural_doodle.py --nlabels 4 --style-image /content/metal-derevo.png \
        --style-mask /content/metal-derevo_sem.png --target-mask /content/mysber2_sem.png \
    

    and ValueError:

    Using TensorFlow backend.
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:458: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint8 = np.dtype([("qint8", np.int8, 1)])
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:459: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:460: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint16 = np.dtype([("qint16", np.int16, 1)])
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:461: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:462: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint32 = np.dtype([("qint32", np.int32, 1)])
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:465: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      np_resource = np.dtype([("resource", np.ubyte, 1)])
    2020-09-09 09:51:55.177770: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
    2020-09-09 09:51:55.177823: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
    2020-09-09 09:51:55.177835: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
    2020-09-09 09:51:55.177844: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
    2020-09-09 09:51:55.177854: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
    Traceback (most recent call last):
      File "/content/Neural-Style-Transfer/improved_neural_doodle.py", line 301, in <module>
        sl = style_loss(style_feat, target_feat, style_masks, target_masks)
      File "/content/Neural-Style-Transfer/improved_neural_doodle.py", line 267, in style_loss
        loss += region_style_weight * region_style_loss(style_image, target_image, style_mask, target_mask)
      File "/content/Neural-Style-Transfer/improved_neural_doodle.py", line 248, in region_style_loss
        s = gram_matrix(masked_style) / K.mean(style_mask) / nb_channels
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py", line 829, in binary_op_wrapper
        y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y")
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py", line 676, in convert_to_tensor
        as_ref=False)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py", line 741, in internal_convert_to_tensor
        ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py", line 614, in _TensorTensorConversionFunction
        % (dtype.name, t.dtype.name, str(t)))
    ### **ValueError: Tensor conversion requested dtype float32 for Tensor with dtype int32: 'Tensor("strided_slice_8:0", shape=(), dtype=int32)**
    

    What should I do to fix it?

    opened by georaa 1
Releases(0.2.7.5)
Owner
Somshubra Majumdar
Interested in Machine Learning, Deep Learning and Data Science in general
Somshubra Majumdar
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022