The ARCA23K baseline system

Overview

ARCA23K Baseline System

This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline system can be found in our DCASE2021 paper [1].

Requirements

This software requires Python >=3.8. To install the dependencies, run:

poetry install

or:

pip install -r requirements.txt

You are also free to use another package manager (e.g. Conda).

The ARCA23K and FSD50K datasets are required too. For convenience, bash scripts are provided to download the datasets automatically. The dependencies are bash, curl, and unzip. Simply run the following command from the root directory of the project:

$ scripts/download_arca23k.sh
$ scripts/download_fsd50k.sh

This will download the datasets to a directory called _datasets/. When running the software, the --arca23k_dir and --fsd50k_dir options (refer to the Usage section) can be used to specify the location of the datasets. This is only necessary if the dataset paths are different from the default.

Usage

The general usage pattern is:

python <script> [-f PATH] <args...> [options...]

The command-line options can also be specified in configuration files. The path of a configuration file can be specified to the program using the --config_file (or -f) command-line option. This option can be used multiple times. Options that are passed in the command-line override those in the config file(s). See default.ini for an example of a config file. Note that default.ini does not need to be specified in the command line and should not be modified.

Training

To train a model, run:

python baseline/train.py DATASET [-f FILE] [--experiment_id ID] [--work_dir DIR] [--arca23k_dir DIR] [--fsd50k_dir DIR] [--frac NUM] [--sample_rate NUM] [--block_length NUM] [--hop_length NUM] [--features SPEC] [--cache_features BOOL] [--model {vgg9a,vgg11a}] [--weights_path PATH] [--label_noise DICT] [--n_epochs N] [--batch_size N] [--lr NUM] [--lr_scheduler SPEC] [--partition SPEC] [--seed N] [--cuda BOOL] [--n_workers N] [--overwrite BOOL]

The DATASET argument accepts the following values:

  • arca23k - Train using the ARCA23K dataset.
  • arca23k-fsd - Train using the ARCA23K-FSD dataset.
  • mixed-p - Train using a mixture of ARCA23K and ARCA23K-FSD. Replace p with a fraction that represents the percentage of ARCA23K examples to be present in the training set.

The --experiment_id option is used to differentiate experiments. It determines where the output files are saved relative to the path given by the --work_dir option. When running multiple trials, either use the --seed option to specify different random seeds or set it to a negative number to disable setting the random seed. Otherwise, the learned models will be identical across different trials.

Example:

python baseline/train.py arca23k --experiment_id my_experiment

Prediction

To compute predictions, run:

python baseline/predict.py DATASET SUBSET [-f FILE] [--experiment_id ID] [--work_dir DIR] [--arca23k_dir DIR] [--fsd50k_dir DIR] [--output_name FILE_NAME] [--clean BOOL] [--sample_rate NUM] [--block_length NUM] [--features SPEC] [--cache_features BOOL] [--weights_path PATH] [--batch_size N] [--partition SPEC] [--n_workers N] [--seed N] [--cuda BOOL]

The SUBSET argument must be set to either training, validation, or test.

Example:

python baseline/predict.py arca23k test --experiment_id my_experiment

Evaluation

To evaluate the predictions, run:

python baseline/evaluate.py DATASET SUBSET [-f FILE] [--experiment_id LIST] [--work_dir DIR] [--arca23k_dir DIR] [--fsd50k_dir DIR] [--output_name FILE_NAME] [--cached BOOL]

The SUBSET argument must be set to either training, validation, or test.

Example:

python baseline/evaluate.py arca23k test --experiment_id my_experiment

Citing

If you wish to cite this work, please cite the following paper:

[1] T. Iqbal, Y. Cao, A. Bailey, M. D. Plumbley, and W. Wang, “ARCA23K: An audio dataset for investigating open-set label noise”, in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021), 2021, Barcelona, Spain, pp. 201–205.

BibTeX:

@inproceedings{Iqbal2021,
    author = {Iqbal, T. and Cao, Y. and Bailey, A. and Plumbley, M. D. and Wang, W.},
    title = {{ARCA23K}: An audio dataset for investigating open-set label noise},
    booktitle = {Proceedings of the Detection and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021)},
    pages = {201--205},
    year = {2021},
    address = {Barcelona, Spain},
}
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022