Cards Against Humanity AI

Related tags

Deep Learningcah-ai
Overview

cah-ai

This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model.

How it works

A player is described by a combination of a text description (e.g. "a college frat boy") and a personality_power (which essentially controls how much their personality description affects their actions). The players are implemented using a semantic similarity model. Prompts are encoded on a per-player basis (e.g. as "a college frat boy answered question ... as") and answers are encoded as normal. The player's choice is determined probabilistically using the semantic similarity model.

Results

I tried simulating a game using scripts/simulate_game.py. I had four virtual players: three with text descriptions, and one that takes random actions. Here are the players and their resulting number of wins, after going through the whole deck:

278 wins - DescPlayer("a college frat boy", personality_power=5.0)
232 wins - DescPlayer("a middle-aged man", personality_power=5.0)
236 wins - DescPlayer("an old racist southern lady", personality_power=5.0)
211 wins - RandomPlayer()

Interestingly, the random player is only a tiny bit worse, even though the other three players are implemented the same way and are therefore more likely to select winners amongst themselves.

Let's see what happens in a game with three duplicate AI players and one random player:

267 wins - DescPlayer("a college frat boy", personality_power=5.0)
247 wins - DescPlayer("a college frat boy", personality_power=5.0)
249 wins - DescPlayer("a college frat boy", personality_power=5.0)
194 wins - RandomPlayer()

Surprisingly, the random player's wins didn't decrease very much. Maybe it's because the players are stochastic, Let's try reducing their temperature to 0.1:

270 wins - DescPlayer("a college frat boy", personality_power=5.0, temperature=0.1)
251 wins - DescPlayer("a college frat boy", personality_power=5.0, temperature=0.1)
254 wins - DescPlayer("a college frat boy", personality_power=5.0, temperature=0.1)
182 wins - RandomPlayer()

So interestingly, even if the first three players are highly "opinionated" and all agree exactly, a random player still gets 19% of the wins (25% would be the case if all players are random).

Owner
Alex Nichol
Web developer, math geek, and AI enthusiast.
Alex Nichol
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
Xi Dongbo 78 Nov 29, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022