To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

Related tags

Deep Learningjaxton
Overview

JaxTon

💯 JAX exercises

License GitHub Twitter

Mission 🚀

To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts.

JAX

The JAX package in Python is a library for high performance and efficient machine learning research.

It is commonly used for various deep learning tasks and runs seamlessly on CPUs, GPUs as well as TPUs.

Exercises 📖

There are a total of 100 JAX exercises divided into 10 sets of Jupyter Notebooks with 10 exercises each. It is recommended to go through the exercises in order but you may start with any set depending on your expertise.

Structured as exercises & tutorials - Choose your style
Suitable for beginners, intermediates & experts - Choose your level
Available on Colab, Kaggle, Binder & GitHub - Choose your platform
Supports running on CPU, GPU & TPU - Choose your backend

Set 01 • JAX Introduction • Beginner • Exercises 1-10

Style Colab Kaggle Binder GitHub
Exercises 1st February, 2022 1st February, 2022 1st February, 2022 1st February, 2022
Solutions 1st February, 2022 1st February, 2022 1st February, 2022 1st February, 2022

Set 02 • Data Operations • Beginner • Exercises 11-20

Style Colab Kaggle Binder GitHub
Exercises 4th February, 2022 4th February, 2022 4th February, 2022 4th February, 2022
Solutions 4th February, 2022 4th February, 2022 4th February, 2022 4th February, 2022

Set 03 • Pseudorandom Numbers • Beginner • Exercises 21-30

Style Colab Kaggle Binder GitHub
Exercises 7th February, 2022 7th February, 2022 7th February, 2022 7th February, 2022
Solutions 7th February, 2022 7th February, 2022 7th February, 2022 7th February, 2022

Set 04 • Just-In-Time (JIT) Compilation • Beginner • Exercises 31-40

Style Colab Kaggle Binder GitHub
Exercises 10th February, 2022 10th February, 2022 10th February, 2022 10th February, 2022
Solutions 10th February, 2022 10th February, 2022 10th February, 2022 10th February, 2022

Set 05 • Control Flows • Beginner • Exercises 41-50

Style Colab Kaggle Binder GitHub
Exercises 13th February, 2022 13th February, 2022 13th February, 2022 13th February, 2022
Solutions 13th February, 2022 13th February, 2022 13th February, 2022 13th February, 2022

Set 06 • Automatic Differentiation • Intermediate • Exercises 51-60

Style Colab Kaggle Binder GitHub
Exercises 16th February, 2022 16th February, 2022 16th February, 2022 16th February, 2022
Solutions 16th February, 2022 16th February, 2022 16th February, 2022 16th February, 2022

Set 07 • Automatic Vectorization • Intermediate • Exercises 61-70

Style Colab Kaggle Binder GitHub
Exercises 19th February, 2022 19th February, 2022 19th February, 2022 19th February, 2022
Solutions 19th February, 2022 19th February, 2022 19th February, 2022 19th February, 2022

Set 08 • Pytrees • Intermediate • Exercises 71-80

Style Colab Kaggle Binder GitHub
Exercises 22nd February, 2022 22nd February, 2022 22nd February, 2022 22nd February, 2022
Solutions 22nd February, 2022 22nd February, 2022 22nd February, 2022 22nd February, 2022

Set 09 • Neural Networks • Expert • Exercises 81-90

Style Colab Kaggle Binder GitHub
Exercises 25th February, 2022 25th February, 2022 25th February, 2022 25th February, 2022
Solutions 25th February, 2022 25th February, 2022 25th February, 2022 25th February, 2022

Set 10 • Capstone Project • Expert • Exercises 91-100

Style Colab Kaggle Binder GitHub
Exercises 28th February, 2022 28th February, 2022 28th February, 2022 28th February, 2022
Solutions 28th February, 2022 28th February, 2022 28th February, 2022 28th February, 2022

The Jupyter Notebooks can also be run locally by cloning the repo and running on your local jupyter server.

git clone https://github.com/vopani/jaxton.git
python3 -m pip install notebook
jupyter notebook

P.S. The notebooks will be periodically updated to improve the exercises and support the latest version.

Contribution 🛠️

Please create an Issue for any improvements, suggestions or errors in the content.

You can also tag @vopani on Twitter for any other queries or feedback.

Credits 🙏

JAX

License 📋

This project is licensed under the Apache License 2.0.

Owner
Rohan Rao
9-time Indian Sudoku Champion | Senior Data Scientist @h2oai | Quadruple Kaggle Grandmaster
Rohan Rao
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023