Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

Overview

CoG-BART

Contrast and Generation Make BART a Good Dialogue Emotion Recognizer

Quick Start:


To run the model on test sets of four datasets,

  1. Download the pre-trained models:

  2. Execute the following command in terminal:

    • For MELD: bash eval.sh MELD save/MELD/best_model_939239

    • For EmoryNLP: bash eval.sh EmoryNLP save/EmoryNLP/best_model_552848

    • For IEMOCAP: bash eval.sh IEMOCAP save/IEMOCAP/best_model_625968

    • For DailyDialog: bash eval.sh DailyDialog save/DailyDialog/best_model_269130

Required Packages:


  • torch==1.7.1
  • transformers==4.11.0
  • numpy
  • pickle
  • tqdm
  • sklearn
  • fitlog

Run on GPU:


Model runs on one GPU by default, and we didn't try it on CPU.

We recommend using GPU with memory more than 24G , otherwise you may need to adjust the hyperparameters and the results may vary significantly.

Training:


For MELD: bash train.sh MELD

For EmoryNLP: bash train.sh EmoryNLP

For IEMOCAP: bash train.sh IEMOCAP

For DailyDialog: bash train.sh DailyDialog

It should be noticed that performance is greatly affected by random seed. So we recommended some seeds in the script for reproduction.

Evaluation and Prediction:

For MELD: bash eval.sh MELD save/MELD/best_model_939239

For EmoryNLP: bash eval.sh EmoryNLP save/EmoryNLP/best_model_552848

For IEMOCAP: bash eval.sh IEMOCAP save/IEMOCAP/best_model_625968

For DailyDialog: bash eval.sh DailyDialog save/DailyDialog/best_model_269130

Citation

If you find this work useful, please cite our work:

@misc{li2021contrast,
    title={Contrast and Generation Make BART a Good Dialogue Emotion Recognizer}, 
    author={Shimin Li and Hang Yan and Xipeng Qiu},
    year={2021},
    eprint={2112.11202},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

Acknowledgement

Some code of this project are referenced from TodKat and DialogXL. We thank their open source materials for contribution to this task.

FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022