当前位置:网站首页>[the Nine Yang Manual] 2022 Fudan University Applied Statistics real problem + analysis
[the Nine Yang Manual] 2022 Fudan University Applied Statistics real problem + analysis
2022-07-06 13:31:00 【Elder martial brother statistics】
Catalog
The real part
One 、(20 branch ) There is... In the bag : a a a Red ball , a a a yellow ball , b b b blue ball . Yes, put it back and touch it 3 A ball , set up A = { A=\{ A={ Draw out a yellow ball and a red ball , And the red ball is taken out before the yellow ball } \} }. seek :
(1)(10 branch ) P ( A ) P(A) P(A);
(2)(10 branch ) if { \{ { I didn't touch the basketball } \} } And A A A The probability is the same , seek a : b a:b a:b.
Two 、(10 branch ) Discrete random variables X X X The distribution column of is
P ( X = a ) = P ( X = b ) = P ( X = a + 1 ) = 1 3 , P(X=a)=P(X=b)=P(X=a+1)=\frac{1}{3}, P(X=a)=P(X=b)=P(X=a+1)=31, among a < b < a + 1 a<b<a+1 a<b<a+1. Find the value range of its variance .
3、 ... and 、(20 branch ) Discrete random variables X X X Take only x , x + a x,x+a x,x+a Two values , among a > 0 a>0 a>0, And V a r ( X ) = 1 Var(X)=1 Var(X)=1, seek a a a Value range and X X X The distribution column of .
Four 、(20 branch ) With random vectors ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY), It is known that after arbitrary rotation transformation ( cos α sin α − sin α cos α ) ( X Y ) \left( \begin{matrix} \cos \alpha& \sin \alpha\\ -\sin \alpha& \cos \alpha\\ \end{matrix} \right) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (cosα−sinαsinαcosα)(XY) Still with ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY) Homodistribution , Try to solve the following problems :
(1) seek P ( 0 < Y < X ) P(0<Y<X) P(0<Y<X);
(2) seek Y X \frac{Y}{X} XY The distribution of .
5、 ... and 、(20 branch ) It is known that ( X , Y ) ∼ N ( 0 , 0 ; 1 , 1 ; 1 2 ) (X,Y)\sim N(0,0;1,1;\frac{1}{2}) (X,Y)∼N(0,0;1,1;21), seek P ( X > 0 , Y > 0 ) P(X>0,Y>0) P(X>0,Y>0).
6、 ... and 、(10 branch ) X 1 , ⋯ , X n , ⋯ X_1,\cdots,X_n,\cdots X1,⋯,Xn,⋯ yes i.i.d. There are random variables in the second moment of , Y n = ∑ i = 1 n X i Y_n = \sum_{i=1}^n X_i Yn=∑i=1nXi, ask : { Y n n 2 } \{\frac{Y_n}{n^2}\} { n2Yn} Obey the law of large numbers .
7、 ... and 、(10 branch ) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn yes i.i.d. obey N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) Random variable of , F F F Is its distribution function , seek − 2 ∑ i = 1 n ln F ( X i ) -2\sum_{i=1}^n \ln F(X_i) −2∑i=1nlnF(Xi) The distribution of .
8、 ... and 、(10 branch ) X 1 , ⋯ , X 6 X_1,\cdots,X_6 X1,⋯,X6 yes i.i.d. Of U ( 0 , 1 ) U(0,1) U(0,1) A random variable , seek V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) Var(2X_{(2)}+3X_{(3)}) Var(2X(2)+3X(3)).
Nine 、(10 branch ) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xni yes i.i.d. Of U ( 0 , θ ) U(0,\theta) U(0,θ) A random sample , set up a X ( 1 ) , b X ( 3 ) aX_{(1)},bX_{(3)} aX(1),bX(3) yes θ \theta θ Unbiased estimation of , seek a , b a,b a,b And compare which of them is more effective .
Ten 、(10 branch ) set up X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn yes i.i.d. Of N ( μ , 16 ) N(\mu,16) N(μ,16) A random sample , μ \mu μ The prior distribution of is N ( a , b 2 ) N(a,b^2) N(a,b2), Find the posterior distribution .
11、 ... and 、(10 branch ) set up X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn yes i.i.d. Of U ( 0 , θ ) U(0,\theta) U(0,θ) A random sample , Consider the hypothesis test problem
H 0 : θ ≤ 1 v s H 1 : θ > 1 H_0:\theta \le 1 \quad \mathrm{vs} \quad H_1: \theta >1 H0:θ≤1vsH1:θ>1 Construct reject fields W = { X ( n ) ≥ c } W=\{X_{(n)}\ge c \} W={ X(n)≥c}. Answer the following questions :
(1)(5 branch ) α = 0.05 \alpha = 0.05 α=0.05, seek c c c;
(2)(5 branch ) When θ = 1.5 \theta=1.5 θ=1.5, In order to make the probability of making the second kind of mistake β ≤ 0.1 \beta\le 0.1 β≤0.1, Find the minimum sample size .
The analysis part
One 、(20 branch ) There is... In the bag : a a a Red ball , a a a yellow ball , b b b blue ball . Yes, put it back and touch it 3 A ball , set up A = { A=\{ A={ Draw out a yellow ball and a red ball , And the red ball is taken out before the yellow ball } \} }. seek :
(1)(10 branch ) P ( A ) P(A) P(A);
(2)(10 branch ) if { \{ { I didn't touch the basketball } \} } And A A A The probability is the same , seek a : b a:b a:b.
Solution:
[ notes ]: The stem of the question can be understood as A 1 = { A_1=\{ A1={ A red ball is taken out before a yellow one } \} }, It can also be interpreted as A 2 = { A_2=\{ A2={ All red balls are taken out before yellow balls } \} }.
(1) Think about it first A 1 A_1 A1, Yes
A 1 = { Red red yellow , Red, yellow, red , Red, yellow, yellow , Blue red yellow , Red blue yellow , Red, yellow, blue } , A_1=\left\{ \text{ Red red yellow }, \text{ Red, yellow, red }, \text{ Red, yellow, yellow }, \text{ Blue red yellow }, \text{ Red blue yellow }, \text{ Red, yellow, blue } \right\} , A1={ Red red yellow , Red, yellow, red , Red, yellow, yellow , Blue red yellow , Red blue yellow , Red, yellow, blue }, There are
P ( A 1 ) = a 3 + a 3 + a 3 + 3 a 2 b ( 2 a + b ) 3 = 3 a 2 ( a + b ) ( 2 a + b ) 3 . P\left( A_1 \right) =\frac{a^3+a^3+a^3+3a^2b}{\left( 2a+b \right) ^3}=\frac{3a^2\left( a+b \right)}{\left( 2a+b \right) ^3}. P(A1)=(2a+b)3a3+a3+a3+3a2b=(2a+b)33a2(a+b). Think again A 2 A_2 A2, Yes
A 2 = { Red red yellow , Red, yellow, yellow , Blue red yellow , Red blue yellow , Red, yellow, blue } , A_2=\left\{ \text{ Red red yellow }, \text{ Red, yellow, yellow }, \text{ Blue red yellow }, \text{ Red blue yellow }, \text{ Red, yellow, blue } \right\} , A2={ Red red yellow , Red, yellow, yellow , Blue red yellow , Red blue yellow , Red, yellow, blue }, There are
P ( A 2 ) = a 3 + a 3 + 3 a 2 b ( 2 a + b ) 3 = a 2 ( 2 a + 3 b ) ( 2 a + b ) 3 . P\left( A_2 \right) =\frac{a^3+a^3+3a^2b}{\left( 2a+b \right) ^3}=\frac{a^2\left( 2a+3b \right)}{\left( 2a+b \right) ^3}. P(A2)=(2a+b)3a3+a3+3a2b=(2a+b)3a2(2a+3b). (2) To calculate B = { B=\{ B={ I didn't touch the basketball } \} }, Yes
P ( B ) = ( 2 a 2 a + b ) 3 = 8 a 3 ( 2 a + b ) 3 , P\left( B \right) =\left( \frac{2a}{2a+b} \right) ^3=\frac{8a^3}{\left( 2a+b \right) ^3}, P(B)=(2a+b2a)3=(2a+b)38a3, if P ( B ) = P ( A 1 ) P(B)=P(A_1) P(B)=P(A1), namely
8 a 3 = 3 a 2 ( a + b ) * 8 a = 3 ( a + b ) * a b = 3 5 . 8a^3=3a^2\left( a+b \right) \,\,\Longrightarrow \,\,8a=3\left( a+b \right) \,\,\Longrightarrow \frac{a}{b}=\frac{3}{5}. 8a3=3a2(a+b)*8a=3(a+b)*ba=53. if P ( B ) = P ( A 2 ) P(B)=P(A_2) P(B)=P(A2), namely
8 a 3 = a 2 ( 2 a + 3 b ) * 8 a = 2 a + 3 b * a b = 1 2 . 8a^3=a^2\left( 2a+3b \right) \,\,\Longrightarrow \,\,8a=2a+3b\,\,\Longrightarrow \frac{a}{b}=\frac{1}{2}. 8a3=a2(2a+3b)*8a=2a+3b*ba=21.
Two 、(10 branch ) Discrete random variables X X X The distribution column of is
P ( X = a ) = P ( X = b ) = P ( X = a + 1 ) = 1 3 , P(X=a)=P(X=b)=P(X=a+1)=\frac{1}{3}, P(X=a)=P(X=b)=P(X=a+1)=31, among a < b < a + 1 a<b<a+1 a<b<a+1. Find the value range of its variance .
Solution:
because V a r ( X ) = V a r ( X − a ) Var(X)=Var(X-a) Var(X)=Var(X−a), So suppose X X X The value is
P ( X = 0 ) = P ( X = c ) = P ( X = 1 ) = 1 3 , P(X=0)=P(X=c)=P(X=1)=\frac{1}{3}, P(X=0)=P(X=c)=P(X=1)=31, among c = b − a ∈ ( 0 , 1 ) c=b-a\in (0,1) c=b−a∈(0,1), There are E X = c + 1 3 EX=\frac{c+1}{3} EX=3c+1, and
E X 2 = c 2 + 1 3 , V a r ( X ) = 3 c 2 + 3 − ( c + 1 ) 2 9 = 2 9 [ ( c − 1 2 ) 2 + 3 4 ] ∈ [ 1 6 , 2 9 ) . EX^2 = \frac{c^2+1}{3},\quad Var(X)=\frac{3c^2+3-(c+1)^2}{9}=\frac{2}{9}\left[ \left( c-\frac{1}{2} \right) ^2+\frac{3}{4} \right] \in \left[ \frac{1}{6},\frac{2}{9} \right) . EX2=3c2+1,Var(X)=93c2+3−(c+1)2=92[(c−21)2+43]∈[61,92).
3、 ... and 、(20 branch ) Discrete random variables X X X Take only x , x + a x,x+a x,x+a Two values , among a > 0 a>0 a>0, And V a r ( X ) = 1 Var(X)=1 Var(X)=1, seek a a a Value range and X X X The distribution column of .
Solution:
The question only gives the condition of variance , and V a r ( X ) = V a r ( X − x ) Var(X)=Var(X-x) Var(X)=Var(X−x), So let's assume X X X Take only 0 , a 0,a 0,a Two values , And
V a r ( X ) = a 2 p − a 2 p 2 = a 2 p ( 1 − p ) = 1 , Var\left( X \right) =a^2p-a^2p^2=a^2p\left( 1-p \right) =1, Var(X)=a2p−a2p2=a2p(1−p)=1, among p = P ( X = a ) p=P(X=a) p=P(X=a), because p ( 1 − p ) ≤ 1 4 p(1-p)\le \frac{1}{4} p(1−p)≤41, therefore a ≥ 2 a\ge 2 a≥2. And when a a a Timing , p p p It can be solved , namely
p 2 − p + 1 a = 0 * p = 1 ± 1 − 4 a 2 . p^2-p+\frac{1}{a}=0 \Longrightarrow p=\frac{1\pm \sqrt{1-\frac{4}{a}}}{2}. p2−p+a1=0*p=21±1−a4. therefore X X X The distribution column of is
P ( X = x ) = 1 + 1 − 4 a 2 , P ( X = x + a ) = 1 − 1 − 4 a 2 , P\left( X=x \right) =\frac{1+\sqrt{1-\frac{4}{a}}}{2},\quad P\left( X=x+a \right) =\frac{1-\sqrt{1-\frac{4}{a}}}{2}, P(X=x)=21+1−a4,P(X=x+a)=21−1−a4, Or is it
P ( X = x ) = 1 − 1 − 4 a 2 , P ( X = x + a ) = 1 + 1 − 4 a 2 . P\left( X=x \right) =\frac{1-\sqrt{1-\frac{4}{a}}}{2},\quad P\left( X=x+a \right) =\frac{1+\sqrt{1-\frac{4}{a}}}{2}. P(X=x)=21−1−a4,P(X=x+a)=21+1−a4.
Four 、(20 branch ) With random vectors ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY), It is known that after arbitrary rotation transformation ( cos α sin α − sin α cos α ) ( X Y ) \left( \begin{matrix} \cos \alpha& \sin \alpha\\ -\sin \alpha& \cos \alpha\\ \end{matrix} \right) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (cosα−sinαsinαcosα)(XY) Still with ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY) Homodistribution , Try to solve the following problems :
(1) seek P ( 0 < Y < X ) P(0<Y<X) P(0<Y<X);
(2) seek Y X \frac{Y}{X} XY The distribution of .
Solution:
(1) set up X , Y X,Y X,Y The density function of is f X , Y ( x , y ) f_{X,Y}(x,y) fX,Y(x,y), For rotation transformation ( U , V ) = ( X , Y ) A T (U,V)=(X,Y)A^T (U,V)=(X,Y)AT, By the method of variable transformation , Yes
f U , V ( u , v ) = f X , Y ( ( u , v ) A ) ∣ A ∣ = f X , Y ( ( u , v ) A ) , f_{U,V}\left( u,v \right) =f_{X,Y}\left( \left( u,v \right) A \right) \left| A \right|=f_{X,Y}\left( \left( u,v \right) A \right) , fU,V(u,v)=fX,Y((u,v)A)∣A∣=fX,Y((u,v)A), On the other hand , because U , V U,V U,V And X , Y X,Y X,Y Homodistribution , so f U , V ( u , v ) = f X , Y ( u , v ) f_{U,V}\left( u,v \right) =f_{X,Y}\left( u,v \right) fU,V(u,v)=fX,Y(u,v), in summary , Yes
f X , Y ( x , y ) = f X , Y ( ( x , y ) A ) , f_{X,Y}\left( x,y \right) =f_{X,Y}\left( \left( x,y \right) A \right) , fX,Y(x,y)=fX,Y((x,y)A), Transform for any rotation A A A establish , This indicates that there is a function u u u bring f X , Y ( x , y ) = u ( x 2 + y 2 ) f_{X,Y}(x,y)=u(\sqrt{x^2+y^2}) fX,Y(x,y)=u(x2+y2). Make polar coordinate transformation { X = R cos Θ , Y = R sin Θ , \begin{cases} X=R\cos \Theta ,\\ Y=R\sin \Theta ,\\ \end{cases} { X=RcosΘ,Y=RsinΘ, By the method of variable transformation , Yes ( R , Θ ) (R,\Theta) (R,Θ) The distribution of is
f R , Θ ( r , θ ) = f X , Y ( r cos θ , r sin θ ) r = r u ( r ) , r ∈ ( 0 , + ∞ ) , θ ∈ ( 0 , 2 π ) , f_{R,\Theta}\left( r,\theta \right) =f_{X,Y}\left( r\cos \theta ,r\sin \theta \right) r=ru\left( r \right) ,\quad r\in \left( 0,+\infty \right) ,\theta \in \left( 0,2\pi \right) , fR,Θ(r,θ)=fX,Y(rcosθ,rsinθ)r=ru(r),r∈(0,+∞),θ∈(0,2π), Factorization , therefore R , Θ R,\Theta R,Θ Independent , And f Θ ( θ ) f_{\Theta}(\theta) fΘ(θ) Is constant , so Θ ∼ U ( 0 , 2 π ) \Theta \sim U(0,2\pi) Θ∼U(0,2π). therefore P ( 0 < Y < X ) = P ( Θ ∈ ( 0 , π 4 ) ) = 1 8 . P\left( 0<Y<X \right) =P\left( \Theta \in \left( 0,\frac{\pi}{4} \right) \right) =\frac{1}{8}. P(0<Y<X)=P(Θ∈(0,4π))=81. (2) T = Y X = tan Θ ∼ c h ( 0 , 1 ) T=\frac{Y}{X}=\tan \Theta \sim \mathrm{ch}\left( 0,1 \right) T=XY=tanΘ∼ch(0,1), Standard Cauchy distribution , The distribution function method can be used to explain : Pay attention here Θ \Theta Θ The value is ( 0 , 2 π ) (0,2\pi) (0,2π), Not on the inverse function arctan \arctan arctan The domain of definition , Discuss carefully . To any t > 0 t>0 t>0, Yes
{ T ≤ t } = { tan Θ ≤ t } = { Θ ∈ [ 0 , a r c tan t ] ∪ ( π 2 , a r c tan t + π ] ∪ ( 3 π 2 , 2 π ] } , \begin{aligned} \left\{ T\le t \right\} &=\left\{ \tan \Theta \le t \right\}\\ &=\left\{ \Theta \in \left[ 0,\mathrm{arc}\tan t \right] \cup \left( \frac{\pi}{2},\mathrm{arc}\tan t+\pi \right] \cup \left( \frac{3\pi}{2},2\pi \right] \right\}\\ \end{aligned}, { T≤t}={ tanΘ≤t}={ Θ∈[0,arctant]∪(2π,arctant+π]∪(23π,2π]}, so P ( T ≤ t ) = π + 2 arctan t 2 π = 1 2 + arctan t π P(T\le t)= \frac{\pi + 2\arctan t}{2\pi}=\frac{1}{2} + \frac{\arctan t}{\pi} P(T≤t)=2ππ+2arctant=21+πarctant, t > 0 t>0 t>0. Discuss again about any t < 0 t<0 t<0, Yes
{ T ≤ t } = { tan Θ ≤ t } = { Θ ∈ ( π 2 , a r c tan t + π ] ∪ ( 3 π 2 , a r c tan t + 2 π ) } \begin{aligned} \left\{ T\le t \right\} &=\left\{ \tan \Theta \le t \right\}\\ &=\left\{ \Theta \in \left( \frac{\pi}{2},\mathrm{arc}\tan t+\pi \right] \cup \left( \frac{3\pi}{2},\mathrm{arc}\tan t+2\pi \right) \right\}\\ \end{aligned} { T≤t}={ tanΘ≤t}={ Θ∈(2π,arctant+π]∪(23π,arctant+2π)} so P ( T ≤ t ) = π + 2 arctan t 2 π = 1 2 + arctan t π P(T\le t)= \frac{\pi + 2\arctan t}{2\pi}=\frac{1}{2} + \frac{\arctan t}{\pi} P(T≤t)=2ππ+2arctant=21+πarctant, t < 0 t<0 t<0. To sum up, there are
F T ( t ) = 1 2 + a r c tan t π , t ∈ R , F_T\left( t \right) =\frac{1}{2}+\frac{\mathrm{arc}\tan t}{\pi},\quad t\in R, FT(t)=21+πarctant,t∈R, To derive
f T ( t ) = 1 π ( 1 + t 2 ) , t ∈ R , f_T\left( t \right) =\frac{1}{\pi \left( 1+t^2 \right)},\quad t\in R, fT(t)=π(1+t2)1,t∈R, This is the standard Cauchy distribution .
5、 ... and 、(20 branch ) It is known that ( X , Y ) ∼ N ( 0 , 0 ; 1 , 1 ; 1 2 ) (X,Y)\sim N(0,0;1,1;\frac{1}{2}) (X,Y)∼N(0,0;1,1;21), seek P ( X > 0 , Y > 0 ) P(X>0,Y>0) P(X>0,Y>0).
Solution:
Make W = 2 3 ( Y − 1 2 X ) W=\frac{2}{\sqrt{3}}(Y-\frac{1}{2}X) W=32(Y−21X), Then there are E W = 0 EW=0 EW=0, V a r ( W ) = 1 Var(W)=1 Var(W)=1, And C o v ( X , W ) = 0 Cov(X,W)=0 Cov(X,W)=0, There are X , W X,W X,W The independent identity obeys the standard normal distribution . Further consider
P ( X > 0 , Y > 0 ) = P ( − X > 0 , − Y > 0 ) = P ( X < 0 , Y < 0 ) , P\left( X>0,Y>0 \right) =P\left( -X>0,-Y>0 \right) =P\left( X<0,Y<0 \right) , P(X>0,Y>0)=P(−X>0,−Y>0)=P(X<0,Y<0), Find out
P ( X > 0 , Y > 0 ) = 1 2 P ( X Y > 0 ) = 1 2 P ( Y X > 0 ) , P\left( X>0,Y>0 \right) =\frac{1}{2}P\left( XY>0 \right) =\frac{1}{2}P\left( \frac{Y}{X}>0 \right) , P(X>0,Y>0)=21P(XY>0)=21P(XY>0), recycling W W W To deal with , namely
{ Y X > 0 } = { 3 W 2 + 1 2 X X > 0 } = { W X > − 1 3 } . \left\{ \frac{Y}{X}>0 \right\} =\left\{ \frac{\frac{\sqrt{3}W}{2}+\frac{1}{2}X}{X}>0 \right\} =\left\{ \frac{W}{X}>-\frac{1}{\sqrt{3}}\right\} . { XY>0}={ X23W+21X>0}={ XW>−31}. utilize W X \frac{W}{X} XW Obey the standard Cauchy distribution , Yes P ( X > 0 , Y > 0 ) = 1 2 ∫ − 3 3 + ∞ 1 π ( 1 + t 2 ) d t = 1 3 . P\left( X>0,Y>0 \right) =\frac{1}{2}\int_{-\frac{\sqrt{3}}{3}}^{+\infty}{\frac{1}{\pi \left( 1+t^2 \right)}dt}=\frac{1}{3}. P(X>0,Y>0)=21∫−33+∞π(1+t2)1dt=31.
6、 ... and 、(10 branch ) X 1 , ⋯ , X n , ⋯ X_1,\cdots,X_n,\cdots X1,⋯,Xn,⋯ yes i.i.d. There are random variables in the second moment of , Y n = ∑ i = 1 n X i Y_n = \sum_{i=1}^n X_i Yn=∑i=1nXi, ask : { Y n n 2 } \{\frac{Y_n}{n^2}\} { n2Yn} Obey the law of large numbers .
Solution:
[ Law 1 ]: Make Z n = Y n n 2 Z_n = \frac{Y_n}{n^2} Zn=n2Yn, Calculate covariance directly , First of all, there is
C o v ( Y k , Y k + l ) = C o v ( ∑ j = 1 k X j , ∑ j = 1 k + l X j ) = k V a r ( X 1 ) , Cov\left( Y_k,Y_{k+l} \right) =Cov\left( \sum_{j=1}^k{X_j},\sum_{j=1}^{k+l}{X_j} \right) =kVar\left( X_1 \right) , Cov(Yk,Yk+l)=Cov(j=1∑kXj,j=1∑k+lXj)=kVar(X1), Further, there are , When l → ∞ l\rightarrow \infty l→∞, Yes
C o v ( Z k , Z k + l ) = 1 k 2 ( k + l ) 2 C o v ( Y k , Y l ) = V a r ( X 1 ) k ( k + l ) 2 → 0 , Cov\left( Z_k,Z_{k+l} \right) =\frac{1}{k^2\left( k+l \right) ^2}Cov\left( Y_k,Y_l \right) =\frac{Var\left( X_1 \right)}{k\left( k+l \right) ^2}\rightarrow 0, Cov(Zk,Zk+l)=k2(k+l)21Cov(Yk,Yl)=k(k+l)2Var(X1)→0, By Bernstein condition , { Y n n 2 } \{\frac{Y_n}{n^2}\} { n2Yn} Obey the law of large numbers .
[ Law two ]: By strong law of numbers , Yes Z n = 1 n ⋅ Y n n → 0 ⋅ E X 1 = 0 Z_n=\frac{1}{n}\cdot \frac{Y_n}{n}\rightarrow 0\cdot EX_1=0 Zn=n1⋅nYn→0⋅EX1=0, a.s., from stolz Theorem , Yes lim n → ∞ ∑ k = 1 n Z k n = lim n → ∞ Z n = 0 , a.s. \underset{n\rightarrow \infty}{\lim}\frac{\sum_{k=1}^n{Z_k}}{n}=\underset{n\rightarrow \infty}{\lim}Z_n=0, \text{a.s.} n→∞limn∑k=1nZk=n→∞limZn=0,a.s.
7、 ... and 、(10 branch ) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn yes i.i.d. obey N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) Random variable of , F F F Is its distribution function , seek − 2 ∑ i = 1 n ln F ( X i ) -2\sum_{i=1}^n \ln F(X_i) −2∑i=1nlnF(Xi) The distribution of .
Solution:
First of all Y i = F ( X i ) ∼ U ( 0 , 1 ) Y_i = F(X_i)\sim U(0,1) Yi=F(Xi)∼U(0,1), Just calculate Z 1 = − 2 Y 1 Z_1=-2Y_1 Z1=−2Y1 The distribution of , By the distribution function method , Yes z > 0 z>0 z>0, Yes
P ( Z 1 ≤ z ) = P ( − 2 ln Y 1 ≤ z ) = P ( Y 1 ≥ e − 2 z ) = 1 − e − 2 z , P\left( Z_1\le z \right) =P\left( -2\ln Y_1\le z \right) =P\left( Y_1\ge e^{-2z} \right) =1-e^{-2z}, P(Z1≤z)=P(−2lnY1≤z)=P(Y1≥e−2z)=1−e−2z, This is an average of 1 / 2 1/2 1/2 The exponential distribution of , It's also χ 2 ( 2 ) \chi^2(2) χ2(2) Distribution , By additivity , have to
− 2 ∑ i = 1 n ln F ( X i ) ∼ χ 2 ( 2 n ) . -2\sum_{i=1}^n \ln F(X_i)\sim \chi^2(2n). −2i=1∑nlnF(Xi)∼χ2(2n).
8、 ... and 、(10 branch ) X 1 , ⋯ , X 6 X_1,\cdots,X_6 X1,⋯,X6 yes i.i.d. Of U ( 0 , 1 ) U(0,1) U(0,1) A random variable , seek V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) Var(2X_{(2)}+3X_{(3)}) Var(2X(2)+3X(3)).
Solution:
Direct calculation , Yes
V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) = 4 V a r ( X ( 2 ) ) + 9 V a r ( X ( 3 ) ) + 12 C o v ( X ( 2 ) , X ( 3 ) ) , Var\left( 2X_{\left( 2 \right)}+3X_{\left( 3 \right)} \right) =4Var\left( X_{\left( 2 \right)} \right) +9Var\left( X_{\left( 3 \right)} \right) +12Cov\left( X_{\left( 2 \right)},X_{\left( 3 \right)} \right) , Var(2X(2)+3X(3))=4Var(X(2))+9Var(X(3))+12Cov(X(2),X(3)), And marginal distribution X ( 2 ) ∼ B e t a ( 2 , 5 ) X_{(2)}\sim Beta(2,5) X(2)∼Beta(2,5), X ( 3 ) ∼ B e t a ( 3 , 4 ) X_{(3)}\sim Beta(3,4) X(3)∼Beta(3,4), Therefore, the two variance terms can be calculated directly , namely
4 V a r ( X ( 2 ) ) = 4 ⋅ 10 7 2 ⋅ 8 = 10 98 , 9 V a r ( X ( 3 ) ) = 9 ⋅ 12 7 2 ⋅ 8 = 27 98 , 4Var\left( X_{\left( 2 \right)} \right) =\frac{4\cdot 10}{7^2\cdot 8}=\frac{10}{98},\quad 9Var\left( X_{\left( 3 \right)} \right) =\frac{9\cdot 12}{7^2\cdot 8}=\frac{27}{98}, 4Var(X(2))=72⋅84⋅10=9810,9Var(X(3))=72⋅89⋅12=9827, Covariance term can be written in formula i ( n + 1 − j ) ( n + 1 ) 2 ( n + 2 ) \frac{i(n+1-j)}{(n+1)^2(n+2)} (n+1)2(n+2)i(n+1−j)(2019 Fudan Yingtong seventh question ), You can also write the joint density first
g 2 , 3 ( x , y ) = 6 ! 1 ! 1 ! 1 ! 3 ! x ⋅ ( 1 − y ) 3 = 6 ! 1 ! 3 ! x ( 1 − y ) 3 , 0 < x < y < 1 , g_{2,3}\left( x,y \right) =\frac{6!}{1!1!1!3!}x\cdot \left( 1-y \right) ^3=\frac{6!}{1!3!}x\left( 1-y \right) ^3,\quad 0<x<y<1, g2,3(x,y)=1!1!1!3!6!x⋅(1−y)3=1!3!6!x(1−y)3,0<x<y<1, Calculate the mixing moment , namely
E ( X ( 2 ) X ( 3 ) ) = 6 ! 3 ! ∫ 0 1 ∫ 0 y x 2 y ( 1 − y ) 3 d x d y = 6 ! 3 ! 3 ∫ 0 1 y 4 ( 1 − y ) 3 d y = 6 ! 3 ! 4 ! 3 ! 8 ! 3 = 8 56 . \begin{aligned} E\left( X_{\left( 2 \right)}X_{\left( 3 \right)} \right) &=\frac{6!}{3!}\int_0^1{\int_0^y{x^2y\left( 1-y \right) ^3dx}dy}\\ &=\frac{6!}{3!3}\int_0^1{y^4\left( 1-y \right) ^3dy}\\ &=\frac{6!3!4!}{3!8!3}=\frac{8}{56}.\\ \end{aligned} E(X(2)X(3))=3!6!∫01∫0yx2y(1−y)3dxdy=3!36!∫01y4(1−y)3dy=3!8!36!3!4!=568. So the covariance is C o v ( X ( 2 ) , X ( 3 ) ) = 8 56 − 6 49 = 2 98 . Cov\left( X_{\left( 2 \right)},X_{\left( 3 \right)} \right) =\frac{8}{56}-\frac{6}{49}=\frac{2}{98}. Cov(X(2),X(3))=568−496=982. Sum up all the calculation results to
V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) = 61 98 . Var\left( 2X_{\left( 2 \right)}+3X_{\left( 3 \right)} \right) =\frac{61}{98}. Var(2X(2)+3X(3))=9861.
Nine 、(10 branch ) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn yes i.i.d. Of U ( 0 , θ ) U(0,\theta) U(0,θ) A random sample , set up a X ( 1 ) , b X ( 3 ) aX_{(1)},bX_{(3)} aX(1),bX(3) yes θ \theta θ Unbiased estimation of , seek a , b a,b a,b And compare which of them is more effective .
Solution:
because X ( 1 ) θ ∼ B e t a ( 1 , 3 ) \frac{X_{(1)}}{\theta}\sim Beta(1,3) θX(1)∼Beta(1,3), so E X ( 1 ) = 1 4 θ EX_{(1)}=\frac{1}{4}\theta EX(1)=41θ, V a r ( X ( 1 ) ) = 3 80 θ 2 Var(X_{(1)})=\frac{3}{80}\theta^2 Var(X(1))=803θ2, so a = 4 a=4 a=4, And V a r ( a X ( 1 ) ) = 3 5 θ 2 Var(aX_{(1)})=\frac{3}{5}\theta^2 Var(aX(1))=53θ2. Empathy X ( 3 ) ∼ B e t a ( 3 , 1 ) X_{(3)}\sim Beta(3,1) X(3)∼Beta(3,1), so E X ( 3 ) = 3 4 θ EX_{(3)}=\frac{3}{4}\theta EX(3)=43θ, V a r ( X ( 3 ) ) = 3 80 θ 2 Var(X_{(3)})=\frac{3}{80}\theta^2 Var(X(3))=803θ2, so b = 4 3 b=\frac{4}{3} b=34, And V a r ( b X ( 3 ) ) = 1 60 θ 2 Var(bX_{(3)})=\frac{1}{60}\theta^2 Var(bX(3))=601θ2. It can be seen that b X ( 3 ) bX_{(3)} bX(3) More effective .
Ten 、(10 branch ) set up X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn yes i.i.d. Of N ( μ , 16 ) N(\mu,16) N(μ,16) A random sample , μ \mu μ The prior distribution of is N ( a , b 2 ) N(a,b^2) N(a,b2), Find the posterior distribution .
Solution:
Consider sufficient statistics X ˉ ∣ μ ∼ N ( μ , 16 n ) \bar{X}|\mu \sim N(\mu,\frac{16}{n}) Xˉ∣μ∼N(μ,n16), The joint density is
p ( x , μ ) = p ( x ∣ μ ) π ( π ) = C ⋅ e − ( x − μ ) 2 2 ⋅ 16 n ⋅ e − ( μ − a ) 2 2 b 2 = C ⋅ e − ( x − μ ) 2 2 ⋅ 16 n ⋅ e − ( μ − a ) 2 2 b 2 = C e − b 2 ( x − μ ) 2 + 16 n ( μ − a ) 2 2 ⋅ 16 n b 2 = C e − b 2 ( x − μ ) 2 + 16 n ( μ − a ) 2 2 ⋅ 16 n b 2 = C e − ( 16 n + b 2 ) μ 2 − 2 ( b 2 x + 16 n a ) μ + ( b 2 x 2 + 16 n a 2 ) 2 ⋅ 16 n b 2 = C 1 ( x ) e − ( μ − b 2 x + 16 n a b 2 + 16 n ) 2 2 ⋅ 16 n b 2 16 n + b 2 , \begin{aligned} p\left( x,\mu \right) &=p\left( x|\mu \right) \pi \left( \pi \right) =C\cdot e^{-\frac{\left( x-\mu \right) ^2}{2\cdot \frac{16}{n}}}\cdot e^{-\frac{\left( \mu -a \right) ^2}{2b^2}}\\ &=C\cdot e^{-\frac{\left( x-\mu \right) ^2}{2\cdot \frac{16}{n}}}\cdot e^{-\frac{\left( \mu -a \right) ^2}{2b^2}}\\ &=Ce^{-\frac{b^2\left( x-\mu \right) ^2+\frac{16}{n}\left( \mu -a \right) ^2}{2\cdot \frac{16}{n}b^2}}\\ &=Ce^{-\frac{b^2\left( x-\mu \right) ^2+\frac{16}{n}\left( \mu -a \right) ^2}{2\cdot \frac{16}{n}b^2}}\\ &=Ce^{-\frac{\left( \frac{16}{n}+b^2 \right) \mu ^2-2\left( b^2x+\frac{16}{n}a \right) \mu +\left( b^2x^2+\frac{16}{n}a^2 \right)}{2\cdot \frac{16}{n}b^2}}\\ &=C_1(x)e^{-\frac{\left( \mu -\frac{b^2x+\frac{16}{n}a}{b^2+\frac{16}{n}} \right) ^2}{2\cdot \frac{\frac{16}{n}b^2}{\frac{16}{n}+b^2}}},\\ \end{aligned} p(x,μ)=p(x∣μ)π(π)=C⋅e−2⋅n16(x−μ)2⋅e−2b2(μ−a)2=C⋅e−2⋅n16(x−μ)2⋅e−2b2(μ−a)2=Ce−2⋅n16b2b2(x−μ)2+n16(μ−a)2=Ce−2⋅n16b2b2(x−μ)2+n16(μ−a)2=Ce−2⋅n16b2(n16+b2)μ2−2(b2x+n16a)μ+(b2x2+n16a2)=C1(x)e−2⋅n16+b2n16b2(μ−b2+n16b2x+n16a)2, It is found that there is a normally distributed kernel , So the posterior distribution is
μ ∣ X ˉ ∼ N ( b 2 X ˉ + 16 n a b 2 + 16 n , 16 n b 2 16 n + b 2 ) = N ( n 16 X ˉ + 1 b 2 a n 16 + 1 b 2 , 1 n 16 + 1 b 2 ) . \mu |\bar{X}\sim N\left( \frac{b^2\bar{X}+\frac{16}{n}a}{b^2+\frac{16}{n}},\frac{\frac{16}{n}b^2}{\frac{16}{n}+b^2} \right) =N\left( \frac{\frac{n}{16}\bar{X}+\frac{1}{b^2}a}{\frac{n}{16}+\frac{1}{b^2}},\frac{1}{\frac{n}{16}+\frac{1}{b^2}} \right) . μ∣Xˉ∼N(b2+n16b2Xˉ+n16a,n16+b2n16b2)=N(16n+b2116nXˉ+b21a,16n+b211). It can be seen that the posterior mean is the weighted average of sample information and prior information .
11、 ... and 、(10 branch ) set up X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn yes i.i.d. Of U ( 0 , θ ) U(0,\theta) U(0,θ) A random sample , Consider the hypothesis test problem
H 0 : θ ≤ 1 v s H 1 : θ > 1 H_0:\theta \le 1 \quad \mathrm{vs} \quad H_1: \theta >1 H0:θ≤1vsH1:θ>1 Construct reject fields W = { X ( n ) ≥ c } W=\{X_{(n)}\ge c \} W={ X(n)≥c}. Answer the following questions :
(1)(5 branch ) α = 0.05 \alpha = 0.05 α=0.05, seek c c c;
(2)(5 branch ) When θ = 1.5 \theta=1.5 θ=1.5, In order to make the probability of making the second kind of mistake β ≤ 0.1 \beta\le 0.1 β≤0.1, Find the minimum sample size .
Solution:
(1) In order to make the significance level 0.05 0.05 0.05, Yes
0.05 = s u p θ ≤ 1 P θ ( X ( n ) ≥ c ) = P θ = 1 ( X ( n ) ≥ c ) = ( 1 − c ) n , 0.05 = \underset{\theta \le 1}{\mathrm{sup}}P_{\theta}\left( X_{\left( n \right)}\ge c \right) =P_{\theta =1}\left( X_{\left( n \right)}\ge c \right) =\left( 1-c \right) ^n, 0.05=θ≤1supPθ(X(n)≥c)=Pθ=1(X(n)≥c)=(1−c)n,
Solution c = 0.9 5 1 n c=0.95^{\frac{1}{n}} c=0.95n1.
(2) The probability of making the second kind of mistake is
β ( 1.5 ) = P θ = 1.5 ( X ( n ) < 0.9 5 1 n ) = ( 0.9 5 1 n 1.5 ) n = 0.95 1. 5 n , \beta \left( 1.5 \right) =P_{\theta =1.5}\left( X_{\left( n \right)}<0.95^{\frac{1}{n}} \right) =\left( \frac{0.95^{\frac{1}{n}}}{1.5} \right) ^n=\frac{0.95}{1.5^n}, β(1.5)=Pθ=1.5(X(n)<0.95n1)=(1.50.95n1)n=1.5n0.95, Make it less than or equal to 0.1 0.1 0.1, have to
0.95 1. 5 n ≤ 0.1 * n ≥ ln 9.5 ln 1.5 * n ≥ 6. \frac{0.95}{1.5^n}\le 0.1 \Longrightarrow \,\,n\ge \frac{\ln 9.5}{\ln 1.5}\,\,\Longrightarrow \,\,n\ge 6. 1.5n0.95≤0.1*n≥ln1.5ln9.5*n≥6.
边栏推荐
- View UI Plus 发布 1.2.0 版本,新增 Image、Skeleton、Typography组件
- Arduino+ds18b20 temperature sensor (buzzer alarm) +lcd1602 display (IIC drive)
- TYUT太原理工大学2022数据库大题之分解关系模式
- [while your roommate plays games, let's see a problem]
- 5.函数递归练习
- CorelDRAW plug-in -- GMS plug-in development -- Introduction to VBA -- GMS plug-in installation -- Security -- macro Manager -- CDR plug-in (I)
- Relational algebra of tyut Taiyuan University of technology 2022 database
- 2.初识C语言(2)
- 【九阳神功】2016复旦大学应用统计真题+解析
- The latest tank battle 2022 full development notes-1
猜你喜欢
8. C language - bit operator and displacement operator
ABA问题遇到过吗,详细说以下,如何避免ABA问题
2. C language matrix multiplication
(ultra detailed onenet TCP protocol access) arduino+esp8266-01s access to the Internet of things platform, upload real-time data collection /tcp transparent transmission (and how to obtain and write L
Questions and answers of "Fundamentals of RF circuits" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology
arduino+水位传感器+led显示+蜂鸣器报警
fianl、finally、finalize三者的区别
5. Download and use of MSDN
更改VS主题及设置背景图片
C language Getting Started Guide
随机推荐
Questions and answers of "Fundamentals of RF circuits" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology
7. Relationship between array, pointer and array
重载和重写的区别
2.C语言初阶练习题(2)
稻 城 亚 丁
Tyut Taiyuan University of technology 2022 "Mao Gai" must be recited
凡人修仙学指针-2
西安电子科技大学22学年上学期《射频电路基础》试题及答案
Set container
(ultra detailed onenet TCP protocol access) arduino+esp8266-01s access to the Internet of things platform, upload real-time data collection /tcp transparent transmission (and how to obtain and write L
Mortal immortal cultivation pointer-2
TYUT太原理工大学2022数据库考试题型大纲
View UI Plus 发布 1.1.0 版本,支持 SSR、支持 Nuxt、增加 TS 声明文件
A brief introduction to the database of tyut Taiyuan University of technology in previous years
(超详细二)onenet数据可视化详解,如何用截取数据流绘图
Voir ui plus version 1.3.1 pour améliorer l'expérience Typescript
[the Nine Yang Manual] 2017 Fudan University Applied Statistics real problem + analysis
The latest tank battle 2022 - Notes on the whole development -2
(super detailed II) detailed visualization of onenet data, how to plot with intercepted data flow
MPLS experiment