当前位置:网站首页>[set theory] set concept and relationship (true subset | empty set | complete set | power set | number of set elements | power set steps)
[set theory] set concept and relationship (true subset | empty set | complete set | power set | number of set elements | power set steps)
2022-07-03 04:06:00 【Programmer community】
List of articles
- One 、 True subset
- Two 、 An empty set
- 3、 ... and 、 The complete
- Four 、 Power set
- 5、 ... and 、 Number of collection elements
- 6、 ... and 、 Power set steps
One 、 True subset
True subset :
describe :
A
,
B
A , B
A,B Two sets , If
A
A
A aggregate yes
B
B
B A subset of a set , also
A
≠
B
A \not= B
A=B , said
A
A
A yes
B
B
B The proper subset of ,
B
B
B It really includes
A
A
A ;
Write it down as :
A
⊂
B
A \subset B
A⊂B
Symbolize :
A
⊂
B
A \subset B
A⊂B
⇔
\Leftrightarrow
⇔
A
⊆
B
∧
A
≠
B
A \subseteq B \land A \not= B
A⊆B∧A=B
Non proper subset :
describe :
A
A
A aggregate No
B
B
B The proper subset of a set ;
Write it down as :
A
⊄
B
A \not\subset B
A⊂B
Symbolize :
A
⊄
B
A \not\subset B
A⊂B
⇔
\Leftrightarrow
⇔
∃
x
(
x
∈
A
∧
x
∉
B
)
∧
A
≠
B
\exist x ( x \in A \land x \not\in B ) \land A \not= B
∃x(x∈A∧x∈B)∧A=B
( The element of being
x
x
x Is a collection
A
A
A The elements of , It's not a collection
B
B
B The elements of , also
A
,
B
A , B
A,B It's not equal , be
A
A
A No
B
B
B The proper subset of )
What a relationship nature :
Reflexivity :
A
⊄
A
A \not\subset A
A⊂A
Antisymmetry : If
A
⊂
B
A \subset B
A⊂B , that
B
⊄
A
B \not\subset A
B⊂A
Transitivity : If
A
⊂
B
A \subset B
A⊂B , also
B
⊂
C
B \subset C
B⊂C , that
A
⊂
C
A \subset C
A⊂C
Two 、 An empty set
Empty set description : A collection without any elements , It is called an empty set , Referred to as An empty set ;
Write it down as :
∅
\varnothing
∅
Empty set example :
A
=
{
x
∣
x
2
+
1
=
0
∧
x
∈
R
}
A = \{ x | x^2 + 1 = 0 \land x \in R \}
A={ x∣x2+1=0∧x∈R}
R
R
R Is a set of real numbers , Above
x
x
x Obviously, there is no solution , Set is also empty ;
Empty set theorem : An empty set is a subset of all sets ;
Empty set inference : Empty sets are unique ;
3、 ... and 、 The complete
The complete : Limit the set in question , Are subsets of a set , The set is called a complete set , Write it down as
E
E
E ;
It's not unique : The complete set is only relative to the scope of discussing problems , Is not the only , You cannot discuss situations outside the scope ;
Examples of complete works : Discuss [0, 1] Properties of real numbers on intervals , Take the complete set as [0, 1] All real numbers on ;
( Discuss the numbers of other intervals , You can also take other intervals as the complete set )
Four 、 Power set
Power set description :
A
A
A It's a collection ,
A
A
A A set consisting of all subsets of a set be called
A
A
A Power set of ;
Write it down as :
P
(
A
)
P(A)
P(A)
Symbolic expression :
P
(
A
)
=
{
x
∣
x
⊆
A
}
P(A) = \{ x | x \subseteq A \}
P(A)={ x∣x⊆A}
5、 ... and 、 Number of collection elements
Number of collection elements :
0
0
0 Meta set :
∅
\varnothing
∅
1
1
1 Meta set : contain
1
1
1 Collection of elements , Also known as Unit set ;
2
2
2 Meta set : contain
2
2
2 Collection of elements ;
⋮
\vdots
⋮
n
n
n Meta set : contain
n
n
n Collection of elements ; (
n
≥
1
n \geq 1
n≥1 )
There are poor sets :
∣
A
∣
|A|
∣A∣ Represents a collection
A
A
A The number of elements in , If
A
A
A The number of elements in the set is Finite number when , Then call it
A
A
A A set is a finite set , or Limited set ;
Theorem of the number of power sets : aggregate
A
A
A Medium Element number
∣
A
∣
=
n
|A| = n
∣A∣=n , be
A
A
A Of Number of power sets
∣
P
(
A
)
∣
=
2
n
|P(A)| = 2^n
∣P(A)∣=2n ;
6、 ... and 、 Power set steps
Power set steps : seek aggregate
A
A
A Power set of , It needs to be calculated in order
A
A
A Collection All subsets from low to high elements , Then these subsets are combined into a set ;
All subsets of low to high elements :
0
0
0 Meta set ,
1
1
1 Meta set ,
2
2
2 Meta set ,
⋯
\cdots
⋯ ,
n
n
n Meta set ;
aggregate
A
=
{
a
,
b
,
c
}
A = \{ a, b , c \}
A={ a,b,c}
0
0
0 Meta set :
∅
\varnothing
∅
1
1
1 Meta set :
{
a
}
\{ a \}
{ a} ,
{
b
}
\{ b \}
{ b} ,
{
c
}
\{ c \}
{ c}
2
2
2 Meta set :
{
a
,
b
}
\{ a, b \}
{ a,b} ,
{
a
,
c
}
\{ a, c \}
{ a,c} ,
{
b
,
c
}
\{ b, c \}
{ b,c}
3
3
3 Meta set :
{
a
,
b
,
c
}
\{ a, b, c \}
{ a,b,c}
aggregate
A
A
A The power set of is :
P
(
A
)
=
{
∅
,
{
a
}
,
{
b
}
,
{
c
}
,
{
a
,
b
}
,
{
a
,
c
}
,
{
b
,
c
}
,
{
a
,
b
,
c
}
}
P(A) = \{ \varnothing , \{ a \} , \{ b \} , \{ c \} , \{ a, b \} , \{ a, c \} , \{ b, c \} , \{ a, b, c \} \}
P(A)={ ∅,{ a},{ b},{ c},{ a,b},{ a,c},{ b,c},{ a,b,c}}
边栏推荐
- [Blue Bridge Road - bug free code] pcf8591 - code analysis of AD conversion
- Interface embedded in golang struct
- Nat. Comm. | 使用Tensor-cell2cell对细胞通讯进行环境感知去卷积
- The longest subarray length with a positive product of 1567 recorded by leecode
- Is it better to speculate in the short term or the medium and long term? Comparative analysis of differences
- 【刷题篇】多数元素(超级水王问题)
- Read a paper_ ChineseBert
- 2.14 simulation summary
- "Designer universe" argument: Data Optimization in the design field is finally reflected in cost, safety and health | chinabrand.com org
- CVPR 2022 | Dalian Institute of technology proposes a self calibration lighting framework for low light level image enhancement of real scenes
猜你喜欢
Message queue addition failure
学会pytorch能干什么?
The 10th China Cloud Computing Conference · China Station: looking forward to the trend of science and technology in the next decade
pytorch项目怎么跑?
CVPR 2022 | 大连理工提出自校准照明框架,用于现实场景的微光图像增强
CVPR 2022 | Dalian Institute of technology proposes a self calibration lighting framework for low light level image enhancement of real scenes
毕设-基于SSM宠物领养中心
Causal AI, a new paradigm for industrial upgrading of the next generation of credible AI?
Nodejs Foundation: shallow chat URL and querystring module
Is pytorch open source?
随机推荐
CVPR 2022 | 大连理工提出自校准照明框架,用于现实场景的微光图像增强
2022-07-02:以下go语言代码输出什么?A:编译错误;B:Panic;C:NaN。 package main import “fmt“ func main() { var a =
[brush questions] connected with rainwater (one dimension)
JS realizes the animation effect of text and pictures in the visual area
【刷题篇】多数元素(超级水王问题)
2022 polymerization process examination questions and polymerization process examination skills
Is pytorch difficult to learn? How to learn pytorch well?
Causal AI, a new paradigm for industrial upgrading of the next generation of credible AI?
学会pytorch能干什么?
2.14 simulation summary
[mathematical logic] predicate logic (toe normal form | toe normal form conversion method | basic equivalence of predicate logic | name changing rules | predicate logic reasoning law)
What is pytorch? Is pytorch a software?
Social phobia of contemporary young people (III)
pytorch怎么下载?pytorch在哪里下载?
Nodejs Foundation: shallow chat URL and querystring module
【毕业季·进击的技术er】职场人的自白
MySQL create table
Basic syntax of class
Wechat applet + Alibaba IOT platform + Hezhou air724ug build a serverless IOT system (III) -- wechat applet is directly connected to Alibaba IOT platform aliiot
【刷题篇】接雨水(一维)