当前位置:网站首页>[set theory] set concept and relationship (true subset | empty set | complete set | power set | number of set elements | power set steps)
[set theory] set concept and relationship (true subset | empty set | complete set | power set | number of set elements | power set steps)
2022-07-03 04:06:00 【Programmer community】
List of articles
- One 、 True subset
- Two 、 An empty set
- 3、 ... and 、 The complete
- Four 、 Power set
- 5、 ... and 、 Number of collection elements
- 6、 ... and 、 Power set steps
One 、 True subset
True subset :
describe :
A
,
B
A , B
A,B Two sets , If
A
A
A aggregate yes
B
B
B A subset of a set , also
A
≠
B
A \not= B
A=B , said
A
A
A yes
B
B
B The proper subset of ,
B
B
B It really includes
A
A
A ;
Write it down as :
A
⊂
B
A \subset B
A⊂B
Symbolize :
A
⊂
B
A \subset B
A⊂B
⇔
\Leftrightarrow
⇔
A
⊆
B
∧
A
≠
B
A \subseteq B \land A \not= B
A⊆B∧A=B
Non proper subset :
describe :
A
A
A aggregate No
B
B
B The proper subset of a set ;
Write it down as :
A
⊄
B
A \not\subset B
A⊂B
Symbolize :
A
⊄
B
A \not\subset B
A⊂B
⇔
\Leftrightarrow
⇔
∃
x
(
x
∈
A
∧
x
∉
B
)
∧
A
≠
B
\exist x ( x \in A \land x \not\in B ) \land A \not= B
∃x(x∈A∧x∈B)∧A=B
( The element of being
x
x
x Is a collection
A
A
A The elements of , It's not a collection
B
B
B The elements of , also
A
,
B
A , B
A,B It's not equal , be
A
A
A No
B
B
B The proper subset of )
What a relationship nature :
Reflexivity :
A
⊄
A
A \not\subset A
A⊂A
Antisymmetry : If
A
⊂
B
A \subset B
A⊂B , that
B
⊄
A
B \not\subset A
B⊂A
Transitivity : If
A
⊂
B
A \subset B
A⊂B , also
B
⊂
C
B \subset C
B⊂C , that
A
⊂
C
A \subset C
A⊂C
Two 、 An empty set
Empty set description : A collection without any elements , It is called an empty set , Referred to as An empty set ;
Write it down as :
∅
\varnothing
∅
Empty set example :
A
=
{
x
∣
x
2
+
1
=
0
∧
x
∈
R
}
A = \{ x | x^2 + 1 = 0 \land x \in R \}
A={ x∣x2+1=0∧x∈R}
R
R
R Is a set of real numbers , Above
x
x
x Obviously, there is no solution , Set is also empty ;
Empty set theorem : An empty set is a subset of all sets ;
Empty set inference : Empty sets are unique ;
3、 ... and 、 The complete
The complete : Limit the set in question , Are subsets of a set , The set is called a complete set , Write it down as
E
E
E ;
It's not unique : The complete set is only relative to the scope of discussing problems , Is not the only , You cannot discuss situations outside the scope ;
Examples of complete works : Discuss [0, 1] Properties of real numbers on intervals , Take the complete set as [0, 1] All real numbers on ;
( Discuss the numbers of other intervals , You can also take other intervals as the complete set )
Four 、 Power set
Power set description :
A
A
A It's a collection ,
A
A
A A set consisting of all subsets of a set be called
A
A
A Power set of ;
Write it down as :
P
(
A
)
P(A)
P(A)
Symbolic expression :
P
(
A
)
=
{
x
∣
x
⊆
A
}
P(A) = \{ x | x \subseteq A \}
P(A)={ x∣x⊆A}
5、 ... and 、 Number of collection elements
Number of collection elements :
0
0
0 Meta set :
∅
\varnothing
∅
1
1
1 Meta set : contain
1
1
1 Collection of elements , Also known as Unit set ;
2
2
2 Meta set : contain
2
2
2 Collection of elements ;
⋮
\vdots
⋮
n
n
n Meta set : contain
n
n
n Collection of elements ; (
n
≥
1
n \geq 1
n≥1 )
There are poor sets :
∣
A
∣
|A|
∣A∣ Represents a collection
A
A
A The number of elements in , If
A
A
A The number of elements in the set is Finite number when , Then call it
A
A
A A set is a finite set , or Limited set ;
Theorem of the number of power sets : aggregate
A
A
A Medium Element number
∣
A
∣
=
n
|A| = n
∣A∣=n , be
A
A
A Of Number of power sets
∣
P
(
A
)
∣
=
2
n
|P(A)| = 2^n
∣P(A)∣=2n ;
6、 ... and 、 Power set steps
Power set steps : seek aggregate
A
A
A Power set of , It needs to be calculated in order
A
A
A Collection All subsets from low to high elements , Then these subsets are combined into a set ;
All subsets of low to high elements :
0
0
0 Meta set ,
1
1
1 Meta set ,
2
2
2 Meta set ,
⋯
\cdots
⋯ ,
n
n
n Meta set ;
aggregate
A
=
{
a
,
b
,
c
}
A = \{ a, b , c \}
A={ a,b,c}
0
0
0 Meta set :
∅
\varnothing
∅
1
1
1 Meta set :
{
a
}
\{ a \}
{ a} ,
{
b
}
\{ b \}
{ b} ,
{
c
}
\{ c \}
{ c}
2
2
2 Meta set :
{
a
,
b
}
\{ a, b \}
{ a,b} ,
{
a
,
c
}
\{ a, c \}
{ a,c} ,
{
b
,
c
}
\{ b, c \}
{ b,c}
3
3
3 Meta set :
{
a
,
b
,
c
}
\{ a, b, c \}
{ a,b,c}
aggregate
A
A
A The power set of is :
P
(
A
)
=
{
∅
,
{
a
}
,
{
b
}
,
{
c
}
,
{
a
,
b
}
,
{
a
,
c
}
,
{
b
,
c
}
,
{
a
,
b
,
c
}
}
P(A) = \{ \varnothing , \{ a \} , \{ b \} , \{ c \} , \{ a, b \} , \{ a, c \} , \{ b, c \} , \{ a, b, c \} \}
P(A)={ ∅,{ a},{ b},{ c},{ a,b},{ a,c},{ b,c},{ a,b,c}}
边栏推荐
- MySQL create table
- 8.8.2-PointersOnC-20220214
- 在 .NET 6 项目中使用 Startup.cs
- JS realizes the animation effect of text and pictures in the visual area
- [Blue Bridge Road -- bug free code] interpretation of some codes of matrix keyboard
- 如何迈向IPv6之IPv6过渡技术-尚文网络奎哥
- 以两列的瀑布流为例,我们应该怎么构建每一列的数组
- [Blue Bridge Road -- bug free code] DS18B20 temperature reading code analysis
- JS实现图片懒加载
- NPM: the 'NPM' item cannot be recognized as the name of a cmdlet, function, script file, or runnable program. Please check the spelling of the name. If the path is included, make sure the path is corr
猜你喜欢

有监督预训练!文本生成又一探索!

中移物联网OneOS与OneNET入选《2021年物联网示范项目名单》

How to move towards IPv6: IPv6 Transition Technology - Shangwen network quigo

2022 P cylinder filling examination content and P cylinder filling practice examination video

JS realizes lazy loading of pictures

For instruction, uploading pictures and display effect optimization of simple wechat applet development

CVPR 2022 | 大连理工提出自校准照明框架,用于现实场景的微光图像增强

Error in compiled file: error: unmapped character encoding GBK

MPLS setup experiment

Mila, University of Ottawa | molecular geometry pre training with Se (3) invariant denoising distance matching
随机推荐
ZIP文件的导出
pytorch项目怎么跑?
[set theory] set concept and relationship (set represents | number set | set relationship | contains | equality | set relationship property)
如何迈向IPv6之IPv6过渡技术-尚文网络奎哥
Mila、渥太华大学 | 用SE(3)不变去噪距离匹配进行分子几何预训练
Nat. Comm. | use tensor cell2cell to deconvolute cell communication with environmental awareness
Recursion: one dimensional linked lists and arrays
The longest subarray length with a positive product of 1567 recorded by leecode
105. SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
NPM: the 'NPM' item cannot be recognized as the name of a cmdlet, function, script file, or runnable program. Please check the spelling of the name. If the path is included, make sure the path is corr
中移物联网OneOS与OneNET入选《2021年物联网示范项目名单》
Wechat applet + Alibaba IOT platform + Hezhou air724ug built with server version system analysis
SAP ui5 application development tutorial 105 - detailed introduction to the linkage effect implementation of SAP ui5 master detail layout mode
2022 tea master (primary) examination questions and tea master (primary) examination question bank
How does the pytorch project run?
学会pytorch能干什么?
golang xxx. Go code template
[Blue Bridge Road - bug free code] pcf8591 - code analysis of AD conversion
有监督预训练!文本生成又一探索!
Recursive use and multi-dimensional array object to one-dimensional array object