当前位置:网站首页>[mathematical logic] predicate logic (toe normal form | toe normal form conversion method | basic equivalence of predicate logic | name changing rules | predicate logic reasoning law)
[mathematical logic] predicate logic (toe normal form | toe normal form conversion method | basic equivalence of predicate logic | name changing rules | predicate logic reasoning law)
2022-07-03 04:02:00 【Programmer community】
List of articles
- One 、 The toe in paradigm
- Two 、 The method of toe in normal form transformation
- 3、 ... and 、 Example of toe in paradigm
- Four 、 Predicate logic inference law
One 、 The toe in paradigm
The formula
A
A
A There are the following forms :
Q
1
x
1
Q
2
x
2
⋯
Q
k
x
k
B
Q_1 x_1 Q_2 x_2 \cdots Q_kx_k B
Q1x1Q2x2⋯QkxkB
said
A
A
A yes The toe in paradigm ; The toe in paradigm
A
A
A Related elements of explain :
quantifiers :
Q
i
Q_i
Qi It's a quantifier , Full name quantifier
∀
\forall
∀ , or There are quantifiers
∃
\exist
∃ ;
Guide arguments :
x
i
x_i
xi yes Guide arguments ;
B
B
B The formula :
B
B
B Is a predicate logic formula , There are no quantifiers ,
B
B
B in Can contain Ahead
x
1
,
x
2
,
⋯
,
x
k
x_1 , x_2 , \cdots , x_k
x1,x2,⋯,xk Guide arguments , also May not contain Some of these arguments ;
(
B
B
B Must not contain quantifiers )
Two 、 The method of toe in normal form transformation
Find a prefix normal form of predicate logic formula , Use Basic equivalence , or Name change rules ;
Basic equivalence : Reference blog 【 Mathematical logic 】 Predicate logic ( Basic equivalence of predicate logic | Eliminate quantifier equivalents | The quantifier negates the equivalent | The scope of quantifier is shrinking and expanding | The equivalent of quantifier distribution )
Name change rules : The formula
A
A
A in , In a quantifier domain , A constraint The emergence of Individual variables Corresponding Guide arguments
x
i
x_i
xi , Use the formula
A
A
A That didn't show up in Argument
x
j
x_j
xj Replace , The resulting formula
A
′
⇔
A
A' \Leftrightarrow A
A′⇔A ;
Such as :
∀
x
F
(
x
)
∨
∀
x
¬
G
(
x
,
y
)
\forall x F(x) \lor \forall x \lnot G(x, y)
∀xF(x)∨∀x¬G(x,y) If its toe in paradigm is required , There are two before and after
x
x
x , Here we use the name change rule , Replace one with something that has never appeared Guide arguments
z
z
z , Change the name to
∀
x
F
(
x
)
∨
∀
z
¬
G
(
z
,
y
)
\forall x F(x) \lor \forall z \lnot G(z, y)
∀xF(x)∨∀z¬G(z,y) ;
3、 ... and 、 Example of toe in paradigm
seek
∀
x
F
(
x
)
∨
¬
∃
x
G
(
x
,
y
)
\forall x F(x) \lor \lnot \exist x G(x, y)
∀xF(x)∨¬∃xG(x,y) The toe in paradigm ;
The above formula is not a toe in paradigm , Its quantifiers
∀
x
\forall x
∀x Our jurisdiction is
F
(
x
)
F(x)
F(x) , quantifiers
∃
x
\exist x
∃x Our jurisdiction is
G
(
x
,
y
)
G(x, y)
G(x,y) , Neither jurisdiction covers the complete formula ;
Use Equivalent calculus and Name change rules , Find the foreskin normal form ;
∀
x
F
(
x
)
∨
¬
∃
x
G
(
x
,
y
)
\forall x F(x) \lor \lnot \exist x G(x, y)
∀xF(x)∨¬∃xG(x,y)
Use The quantifier negates the equivalent , The first Negative connectives Move to the back of the quantifier , The equivalent formula used is
¬
∃
x
A
(
x
)
⇔
∀
x
¬
A
(
x
)
\lnot \exist x A(x) \Leftrightarrow \forall x \lnot A(x)
¬∃xA(x)⇔∀x¬A(x) ;
⇔
∀
x
F
(
x
)
∨
∀
x
¬
G
(
x
,
y
)
\Leftrightarrow \forall x F(x) \lor \forall x \lnot G(x, y)
⇔∀xF(x)∨∀x¬G(x,y)
Use Name change rules , Put the second
∀
x
¬
G
(
x
,
y
)
\forall x \lnot G(x, y)
∀x¬G(x,y) Medium
x
x
x Switch to
z
z
z ;
⇔
∀
x
F
(
x
)
∨
∀
z
¬
G
(
z
,
y
)
\Leftrightarrow \forall x F(x) \lor \forall z \lnot G(z, y)
⇔∀xF(x)∨∀z¬G(z,y)
Use Equivalent formula of scope expansion , take
∀
x
\forall x
∀x Scope expansion , The equivalent formula used is
∀
x
(
A
(
x
)
∨
B
)
⇔
∀
x
A
(
x
)
∨
B
\forall x ( A(x) \lor B ) \Leftrightarrow \forall x A(x) \lor B
∀x(A(x)∨B)⇔∀xA(x)∨B
⇔
∀
x
(
F
(
x
)
∨
∀
z
¬
G
(
z
,
y
)
)
\Leftrightarrow \forall x ( F(x) \lor \forall z \lnot G(z, y) )
⇔∀x(F(x)∨∀z¬G(z,y))
Again using Equivalent formula of scope expansion , take
∀
z
\forall z
∀z Scope expansion , The equivalent formula used is
∀
x
(
A
(
x
)
∨
B
)
⇔
∀
x
A
(
x
)
∨
B
\forall x ( A(x) \lor B ) \Leftrightarrow \forall x A(x) \lor B
∀x(A(x)∨B)⇔∀xA(x)∨B
⇔
∀
x
∀
z
(
F
(
x
)
∨
¬
G
(
z
,
y
)
)
\Leftrightarrow \forall x \forall z ( F(x) \lor \lnot G(z, y) )
⇔∀x∀z(F(x)∨¬G(z,y))
At this time, it is the toe in paradigm ;
Use Propositional logic Equivalent formula Medium Implication equivalence
⇔
∀
x
∀
z
(
G
(
z
,
y
)
→
F
(
x
)
)
\Leftrightarrow \forall x \forall z ( G(z, y) \to F(x) )
⇔∀x∀z(G(z,y)→F(x))
Four 、 Predicate logic inference law
The following reasoning law is one-way , From the left, we can infer the right , You can't infer from the right to the left ; ( Not equivalent )
①
∀
x
A
(
x
)
∨
∀
x
B
(
x
)
⇒
∀
x
(
A
(
x
)
∨
B
(
x
)
)
\rm \forall x A(x) \lor \forall x B(x) \Rightarrow \forall x ( A(x) \lor B(x) )
∀xA(x)∨∀xB(x)⇒∀x(A(x)∨B(x))
Corresponding Full name quantifier Distribution rate , In the equation Only applicable to Conjunctions , Because of the above Disjunction time , From right to left It's wrong. , You can only reason from left to right ;
②
∃
x
(
A
(
x
)
∧
B
(
x
)
)
⇒
∃
x
A
(
x
)
∧
∃
x
B
(
x
)
\rm \exist x ( A(x) \land B(x) ) \Rightarrow \exist x A(x) \land \exist x B(x)
∃x(A(x)∧B(x))⇒∃xA(x)∧∃xB(x)
③
∀
x
(
A
(
x
)
→
B
(
x
)
)
⇒
∀
x
A
(
x
)
→
∀
x
B
(
x
)
\rm \forall x ( A(x) \to B(x) ) \Rightarrow \forall x A(x) \to \forall x B(x)
∀x(A(x)→B(x))⇒∀xA(x)→∀xB(x)
④
∀
x
(
A
(
x
)
→
B
(
x
)
)
⇒
∃
x
A
(
x
)
→
∃
x
B
(
x
)
\rm \forall x ( A(x) \to B(x) ) \Rightarrow \exist x A(x) \to \exist x B(x)
∀x(A(x)→B(x))⇒∃xA(x)→∃xB(x)
边栏推荐
- 2022 mobile crane driver examination registration and mobile crane driver operation examination question bank
- [brush questions] connected with rainwater (one dimension)
- Null and undefined
- Shardingsphere dynamic data source
- golang xxx. Go code template
- In Net 6 project using startup cs
- C language hashtable/hashset library summary
- Practical operation of vim
- 编译文件时报错:错误: 编码GBK的不可映射字符
- [Apple Push] IMessage group sending condition document (push certificate) development tool pushnotification
猜你喜欢

在 .NET 6 项目中使用 Startup.cs

Ffmpeg recording screen and screenshot

2022 P cylinder filling examination content and P cylinder filling practice examination video

How to move towards IPv6: IPv6 Transition Technology - Shangwen network quigo

"Final review" 16/32-bit microprocessor (8086) basic register

Ffmpeg download and installation tutorial and introduction

leetcode:297. Serialization and deserialization of binary tree

Is pytorch difficult to learn? How to learn pytorch well?

Bisher - based on SSM pet adoption center

Mila、渥太华大学 | 用SE(3)不变去噪距离匹配进行分子几何预训练
随机推荐
[Apple Push] IMessage group sending condition document (push certificate) development tool pushnotification
105. SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
2022年已过半,得抓紧
基于Pytorch和RDKit的QSAR模型建立脚本
阿洛对自己的思考
类的基础语法
Read a paper_ ChineseBert
pytorch怎么下载?pytorch在哪里下载?
nodejs基础:浅聊url和querystring模块
Mutex and rwmutex in golang
国产PC系统完成闭环,替代美国软硬件体系的时刻已经到来
Debug: CD cannot be used in kaggle
How to download pytorch? Where can I download pytorch?
Dynamic programming: Longest palindrome substring and subsequence
Write it down once Net travel management background CPU Explosion Analysis
CVPR 2022 | Dalian Technology propose un cadre d'éclairage auto - étalonné pour l'amélioration de l'image de faible luminosité de la scène réelle
[daily question] dichotomy - find a single dog (Bushi)
2022deepbrainchain biweekly report no. 104 (01.16-02.15)
Social phobia of contemporary young people (III)
300+篇文献!一文详解基于Transformer的多模态学习最新进展