当前位置:网站首页>[mathematical logic] predicate logic (toe normal form | toe normal form conversion method | basic equivalence of predicate logic | name changing rules | predicate logic reasoning law)
[mathematical logic] predicate logic (toe normal form | toe normal form conversion method | basic equivalence of predicate logic | name changing rules | predicate logic reasoning law)
2022-07-03 04:02:00 【Programmer community】
List of articles
- One 、 The toe in paradigm
- Two 、 The method of toe in normal form transformation
- 3、 ... and 、 Example of toe in paradigm
- Four 、 Predicate logic inference law
One 、 The toe in paradigm
The formula
A
A
A There are the following forms :
Q
1
x
1
Q
2
x
2
⋯
Q
k
x
k
B
Q_1 x_1 Q_2 x_2 \cdots Q_kx_k B
Q1x1Q2x2⋯QkxkB
said
A
A
A yes The toe in paradigm ; The toe in paradigm
A
A
A Related elements of explain :
quantifiers :
Q
i
Q_i
Qi It's a quantifier , Full name quantifier
∀
\forall
∀ , or There are quantifiers
∃
\exist
∃ ;
Guide arguments :
x
i
x_i
xi yes Guide arguments ;
B
B
B The formula :
B
B
B Is a predicate logic formula , There are no quantifiers ,
B
B
B in Can contain Ahead
x
1
,
x
2
,
⋯
,
x
k
x_1 , x_2 , \cdots , x_k
x1,x2,⋯,xk Guide arguments , also May not contain Some of these arguments ;
(
B
B
B Must not contain quantifiers )
Two 、 The method of toe in normal form transformation
Find a prefix normal form of predicate logic formula , Use Basic equivalence , or Name change rules ;
Basic equivalence : Reference blog 【 Mathematical logic 】 Predicate logic ( Basic equivalence of predicate logic | Eliminate quantifier equivalents | The quantifier negates the equivalent | The scope of quantifier is shrinking and expanding | The equivalent of quantifier distribution )
Name change rules : The formula
A
A
A in , In a quantifier domain , A constraint The emergence of Individual variables Corresponding Guide arguments
x
i
x_i
xi , Use the formula
A
A
A That didn't show up in Argument
x
j
x_j
xj Replace , The resulting formula
A
′
⇔
A
A' \Leftrightarrow A
A′⇔A ;
Such as :
∀
x
F
(
x
)
∨
∀
x
¬
G
(
x
,
y
)
\forall x F(x) \lor \forall x \lnot G(x, y)
∀xF(x)∨∀x¬G(x,y) If its toe in paradigm is required , There are two before and after
x
x
x , Here we use the name change rule , Replace one with something that has never appeared Guide arguments
z
z
z , Change the name to
∀
x
F
(
x
)
∨
∀
z
¬
G
(
z
,
y
)
\forall x F(x) \lor \forall z \lnot G(z, y)
∀xF(x)∨∀z¬G(z,y) ;
3、 ... and 、 Example of toe in paradigm
seek
∀
x
F
(
x
)
∨
¬
∃
x
G
(
x
,
y
)
\forall x F(x) \lor \lnot \exist x G(x, y)
∀xF(x)∨¬∃xG(x,y) The toe in paradigm ;
The above formula is not a toe in paradigm , Its quantifiers
∀
x
\forall x
∀x Our jurisdiction is
F
(
x
)
F(x)
F(x) , quantifiers
∃
x
\exist x
∃x Our jurisdiction is
G
(
x
,
y
)
G(x, y)
G(x,y) , Neither jurisdiction covers the complete formula ;
Use Equivalent calculus and Name change rules , Find the foreskin normal form ;
∀
x
F
(
x
)
∨
¬
∃
x
G
(
x
,
y
)
\forall x F(x) \lor \lnot \exist x G(x, y)
∀xF(x)∨¬∃xG(x,y)
Use The quantifier negates the equivalent , The first Negative connectives Move to the back of the quantifier , The equivalent formula used is
¬
∃
x
A
(
x
)
⇔
∀
x
¬
A
(
x
)
\lnot \exist x A(x) \Leftrightarrow \forall x \lnot A(x)
¬∃xA(x)⇔∀x¬A(x) ;
⇔
∀
x
F
(
x
)
∨
∀
x
¬
G
(
x
,
y
)
\Leftrightarrow \forall x F(x) \lor \forall x \lnot G(x, y)
⇔∀xF(x)∨∀x¬G(x,y)
Use Name change rules , Put the second
∀
x
¬
G
(
x
,
y
)
\forall x \lnot G(x, y)
∀x¬G(x,y) Medium
x
x
x Switch to
z
z
z ;
⇔
∀
x
F
(
x
)
∨
∀
z
¬
G
(
z
,
y
)
\Leftrightarrow \forall x F(x) \lor \forall z \lnot G(z, y)
⇔∀xF(x)∨∀z¬G(z,y)
Use Equivalent formula of scope expansion , take
∀
x
\forall x
∀x Scope expansion , The equivalent formula used is
∀
x
(
A
(
x
)
∨
B
)
⇔
∀
x
A
(
x
)
∨
B
\forall x ( A(x) \lor B ) \Leftrightarrow \forall x A(x) \lor B
∀x(A(x)∨B)⇔∀xA(x)∨B
⇔
∀
x
(
F
(
x
)
∨
∀
z
¬
G
(
z
,
y
)
)
\Leftrightarrow \forall x ( F(x) \lor \forall z \lnot G(z, y) )
⇔∀x(F(x)∨∀z¬G(z,y))
Again using Equivalent formula of scope expansion , take
∀
z
\forall z
∀z Scope expansion , The equivalent formula used is
∀
x
(
A
(
x
)
∨
B
)
⇔
∀
x
A
(
x
)
∨
B
\forall x ( A(x) \lor B ) \Leftrightarrow \forall x A(x) \lor B
∀x(A(x)∨B)⇔∀xA(x)∨B
⇔
∀
x
∀
z
(
F
(
x
)
∨
¬
G
(
z
,
y
)
)
\Leftrightarrow \forall x \forall z ( F(x) \lor \lnot G(z, y) )
⇔∀x∀z(F(x)∨¬G(z,y))
At this time, it is the toe in paradigm ;
Use Propositional logic Equivalent formula Medium Implication equivalence
⇔
∀
x
∀
z
(
G
(
z
,
y
)
→
F
(
x
)
)
\Leftrightarrow \forall x \forall z ( G(z, y) \to F(x) )
⇔∀x∀z(G(z,y)→F(x))
Four 、 Predicate logic inference law
The following reasoning law is one-way , From the left, we can infer the right , You can't infer from the right to the left ; ( Not equivalent )
①
∀
x
A
(
x
)
∨
∀
x
B
(
x
)
⇒
∀
x
(
A
(
x
)
∨
B
(
x
)
)
\rm \forall x A(x) \lor \forall x B(x) \Rightarrow \forall x ( A(x) \lor B(x) )
∀xA(x)∨∀xB(x)⇒∀x(A(x)∨B(x))
Corresponding Full name quantifier Distribution rate , In the equation Only applicable to Conjunctions , Because of the above Disjunction time , From right to left It's wrong. , You can only reason from left to right ;
②
∃
x
(
A
(
x
)
∧
B
(
x
)
)
⇒
∃
x
A
(
x
)
∧
∃
x
B
(
x
)
\rm \exist x ( A(x) \land B(x) ) \Rightarrow \exist x A(x) \land \exist x B(x)
∃x(A(x)∧B(x))⇒∃xA(x)∧∃xB(x)
③
∀
x
(
A
(
x
)
→
B
(
x
)
)
⇒
∀
x
A
(
x
)
→
∀
x
B
(
x
)
\rm \forall x ( A(x) \to B(x) ) \Rightarrow \forall x A(x) \to \forall x B(x)
∀x(A(x)→B(x))⇒∀xA(x)→∀xB(x)
④
∀
x
(
A
(
x
)
→
B
(
x
)
)
⇒
∃
x
A
(
x
)
→
∃
x
B
(
x
)
\rm \forall x ( A(x) \to B(x) ) \Rightarrow \exist x A(x) \to \exist x B(x)
∀x(A(x)→B(x))⇒∃xA(x)→∃xB(x)
边栏推荐
- [mathematical logic] propositional logic (equivalent calculus | idempotent law | exchange law | combination law | distribution law | De Morgan law | absorption rate | zero law | identity | exclusion l
- eth入门之简介
- JMeter starts from zero (III) -- simple use of regular expressions
- Role of JS No
- Cnopendata China Customs Statistics
- 释放数据力量的Ceph-尚文网络xUP楠哥
- CVPR 2022 | 大連理工提出自校准照明框架,用於現實場景的微光圖像增强
- Mutex and rwmutex in golang
- js/ts底层实现双击事件
- Social phobia of contemporary young people (III)
猜你喜欢
Is it better to speculate in the short term or the medium and long term? Comparative analysis of differences
Ffmpeg download and installation tutorial and introduction
[brush questions] find the number pair distance with the smallest K
有监督预训练!文本生成又一探索!
js实现在可视区内,文字图片动画效果
MPLS setup experiment
第十届中国云计算大会·中国站:展望未来十年科技走向
Role of JS No
因果AI,下一代可信AI的产业升级新范式?
How to download pytorch? Where can I download pytorch?
随机推荐
Idea shortcut keys
eth入门之简介
2022 Shandong Province safety officer C certificate examination questions and Shandong Province safety officer C certificate simulation examination question bank
IPv6 transition technology-6to4 manual tunnel configuration experiment -- Kuige of Shangwen network
How to execute a swift for in loop in one step- How can I do a Swift for-in loop with a step?
Web session management security issues
Arduino application development - LCD display GIF dynamic diagram
Makefile demo
"Designer universe" argument: Data Optimization in the design field is finally reflected in cost, safety and health | chinabrand.com org
Supervised pre training! Another exploration of text generation!
CVPR 2022 | Dalian Technology propose un cadre d'éclairage auto - étalonné pour l'amélioration de l'image de faible luminosité de la scène réelle
Recursive use and multi-dimensional array object to one-dimensional array object
2022 tea master (intermediate) examination questions and analysis and tea master (intermediate) practical examination video
Recursion: depth first search
2022 P cylinder filling examination content and P cylinder filling practice examination video
Is it better to speculate in the short term or the medium and long term? Comparative analysis of differences
Cnopendata China Customs Statistics
[brush questions] most elements (super water king problem)
树莓派如何连接WiFi
Write it down once Net travel management background CPU Explosion Analysis