当前位置:网站首页>[mathematical logic] predicate logic (toe normal form | toe normal form conversion method | basic equivalence of predicate logic | name changing rules | predicate logic reasoning law)
[mathematical logic] predicate logic (toe normal form | toe normal form conversion method | basic equivalence of predicate logic | name changing rules | predicate logic reasoning law)
2022-07-03 04:02:00 【Programmer community】
List of articles
- One 、 The toe in paradigm
- Two 、 The method of toe in normal form transformation
- 3、 ... and 、 Example of toe in paradigm
- Four 、 Predicate logic inference law
One 、 The toe in paradigm
The formula
A
A
A There are the following forms :
Q
1
x
1
Q
2
x
2
⋯
Q
k
x
k
B
Q_1 x_1 Q_2 x_2 \cdots Q_kx_k B
Q1x1Q2x2⋯QkxkB
said
A
A
A yes The toe in paradigm ; The toe in paradigm
A
A
A Related elements of explain :
quantifiers :
Q
i
Q_i
Qi It's a quantifier , Full name quantifier
∀
\forall
∀ , or There are quantifiers
∃
\exist
∃ ;
Guide arguments :
x
i
x_i
xi yes Guide arguments ;
B
B
B The formula :
B
B
B Is a predicate logic formula , There are no quantifiers ,
B
B
B in Can contain Ahead
x
1
,
x
2
,
⋯
,
x
k
x_1 , x_2 , \cdots , x_k
x1,x2,⋯,xk Guide arguments , also May not contain Some of these arguments ;
(
B
B
B Must not contain quantifiers )
Two 、 The method of toe in normal form transformation
Find a prefix normal form of predicate logic formula , Use Basic equivalence , or Name change rules ;
Basic equivalence : Reference blog 【 Mathematical logic 】 Predicate logic ( Basic equivalence of predicate logic | Eliminate quantifier equivalents | The quantifier negates the equivalent | The scope of quantifier is shrinking and expanding | The equivalent of quantifier distribution )
Name change rules : The formula
A
A
A in , In a quantifier domain , A constraint The emergence of Individual variables Corresponding Guide arguments
x
i
x_i
xi , Use the formula
A
A
A That didn't show up in Argument
x
j
x_j
xj Replace , The resulting formula
A
′
⇔
A
A' \Leftrightarrow A
A′⇔A ;
Such as :
∀
x
F
(
x
)
∨
∀
x
¬
G
(
x
,
y
)
\forall x F(x) \lor \forall x \lnot G(x, y)
∀xF(x)∨∀x¬G(x,y) If its toe in paradigm is required , There are two before and after
x
x
x , Here we use the name change rule , Replace one with something that has never appeared Guide arguments
z
z
z , Change the name to
∀
x
F
(
x
)
∨
∀
z
¬
G
(
z
,
y
)
\forall x F(x) \lor \forall z \lnot G(z, y)
∀xF(x)∨∀z¬G(z,y) ;
3、 ... and 、 Example of toe in paradigm
seek
∀
x
F
(
x
)
∨
¬
∃
x
G
(
x
,
y
)
\forall x F(x) \lor \lnot \exist x G(x, y)
∀xF(x)∨¬∃xG(x,y) The toe in paradigm ;
The above formula is not a toe in paradigm , Its quantifiers
∀
x
\forall x
∀x Our jurisdiction is
F
(
x
)
F(x)
F(x) , quantifiers
∃
x
\exist x
∃x Our jurisdiction is
G
(
x
,
y
)
G(x, y)
G(x,y) , Neither jurisdiction covers the complete formula ;
Use Equivalent calculus and Name change rules , Find the foreskin normal form ;
∀
x
F
(
x
)
∨
¬
∃
x
G
(
x
,
y
)
\forall x F(x) \lor \lnot \exist x G(x, y)
∀xF(x)∨¬∃xG(x,y)
Use The quantifier negates the equivalent , The first Negative connectives Move to the back of the quantifier , The equivalent formula used is
¬
∃
x
A
(
x
)
⇔
∀
x
¬
A
(
x
)
\lnot \exist x A(x) \Leftrightarrow \forall x \lnot A(x)
¬∃xA(x)⇔∀x¬A(x) ;
⇔
∀
x
F
(
x
)
∨
∀
x
¬
G
(
x
,
y
)
\Leftrightarrow \forall x F(x) \lor \forall x \lnot G(x, y)
⇔∀xF(x)∨∀x¬G(x,y)
Use Name change rules , Put the second
∀
x
¬
G
(
x
,
y
)
\forall x \lnot G(x, y)
∀x¬G(x,y) Medium
x
x
x Switch to
z
z
z ;
⇔
∀
x
F
(
x
)
∨
∀
z
¬
G
(
z
,
y
)
\Leftrightarrow \forall x F(x) \lor \forall z \lnot G(z, y)
⇔∀xF(x)∨∀z¬G(z,y)
Use Equivalent formula of scope expansion , take
∀
x
\forall x
∀x Scope expansion , The equivalent formula used is
∀
x
(
A
(
x
)
∨
B
)
⇔
∀
x
A
(
x
)
∨
B
\forall x ( A(x) \lor B ) \Leftrightarrow \forall x A(x) \lor B
∀x(A(x)∨B)⇔∀xA(x)∨B
⇔
∀
x
(
F
(
x
)
∨
∀
z
¬
G
(
z
,
y
)
)
\Leftrightarrow \forall x ( F(x) \lor \forall z \lnot G(z, y) )
⇔∀x(F(x)∨∀z¬G(z,y))
Again using Equivalent formula of scope expansion , take
∀
z
\forall z
∀z Scope expansion , The equivalent formula used is
∀
x
(
A
(
x
)
∨
B
)
⇔
∀
x
A
(
x
)
∨
B
\forall x ( A(x) \lor B ) \Leftrightarrow \forall x A(x) \lor B
∀x(A(x)∨B)⇔∀xA(x)∨B
⇔
∀
x
∀
z
(
F
(
x
)
∨
¬
G
(
z
,
y
)
)
\Leftrightarrow \forall x \forall z ( F(x) \lor \lnot G(z, y) )
⇔∀x∀z(F(x)∨¬G(z,y))
At this time, it is the toe in paradigm ;
Use Propositional logic Equivalent formula Medium Implication equivalence
⇔
∀
x
∀
z
(
G
(
z
,
y
)
→
F
(
x
)
)
\Leftrightarrow \forall x \forall z ( G(z, y) \to F(x) )
⇔∀x∀z(G(z,y)→F(x))
Four 、 Predicate logic inference law
The following reasoning law is one-way , From the left, we can infer the right , You can't infer from the right to the left ; ( Not equivalent )
①
∀
x
A
(
x
)
∨
∀
x
B
(
x
)
⇒
∀
x
(
A
(
x
)
∨
B
(
x
)
)
\rm \forall x A(x) \lor \forall x B(x) \Rightarrow \forall x ( A(x) \lor B(x) )
∀xA(x)∨∀xB(x)⇒∀x(A(x)∨B(x))
Corresponding Full name quantifier Distribution rate , In the equation Only applicable to Conjunctions , Because of the above Disjunction time , From right to left It's wrong. , You can only reason from left to right ;
②
∃
x
(
A
(
x
)
∧
B
(
x
)
)
⇒
∃
x
A
(
x
)
∧
∃
x
B
(
x
)
\rm \exist x ( A(x) \land B(x) ) \Rightarrow \exist x A(x) \land \exist x B(x)
∃x(A(x)∧B(x))⇒∃xA(x)∧∃xB(x)
③
∀
x
(
A
(
x
)
→
B
(
x
)
)
⇒
∀
x
A
(
x
)
→
∀
x
B
(
x
)
\rm \forall x ( A(x) \to B(x) ) \Rightarrow \forall x A(x) \to \forall x B(x)
∀x(A(x)→B(x))⇒∀xA(x)→∀xB(x)
④
∀
x
(
A
(
x
)
→
B
(
x
)
)
⇒
∃
x
A
(
x
)
→
∃
x
B
(
x
)
\rm \forall x ( A(x) \to B(x) ) \Rightarrow \exist x A(x) \to \exist x B(x)
∀x(A(x)→B(x))⇒∃xA(x)→∃xB(x)
边栏推荐
- Dynamic programming: Longest palindrome substring and subsequence
- 没有sXid,suid&sgid将进入险境!-尚文网络xUP楠哥
- Separable bonds and convertible bonds
- C language hashtable/hashset library summary
- [Apple Push] IMessage group sending condition document (push certificate) development tool pushnotification
- 编译文件时报错:错误: 编码GBK的不可映射字符
- SAP UI5 应用开发教程之一百零五 - SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
- Simple wechat applet development page Jump, data binding, obtaining user information, obtaining user location information
- 学会pytorch能干什么?
- 类的基础语法
猜你喜欢

The latest analysis of the main principals of hazardous chemical business units in 2022 and the simulated examination questions of the main principals of hazardous chemical business units

Recursion: depth first search

编译文件时报错:错误: 编码GBK的不可映射字符

What can learning pytorch do?

CVPR 2022 | Dalian Technology propose un cadre d'éclairage auto - étalonné pour l'amélioration de l'image de faible luminosité de la scène réelle

如何迈向IPv6之IPv6过渡技术-尚文网络奎哥

leetcode:297. 二叉树的序列化与反序列化

2022 tea master (primary) examination questions and tea master (primary) examination question bank

Supervised pre training! Another exploration of text generation!

释放数据力量的Ceph-尚文网络xUP楠哥
随机推荐
国产PC系统完成闭环,替代美国软硬件体系的时刻已经到来
Mutex and rwmutex in golang
Web session management security issues
Nat. Comm. | 使用Tensor-cell2cell对细胞通讯进行环境感知去卷积
服务器无法远程连接原因分析
Separable bonds and convertible bonds
300+篇文献!一文详解基于Transformer的多模态学习最新进展
Is pytorch difficult to learn? How to learn pytorch well?
2022 mobile crane driver examination registration and mobile crane driver operation examination question bank
China Mobile Internet of things oneos and onenet were selected in the list of 2021 Internet of things demonstration projects
Bisher - based on SSM pet adoption center
[learning notes] seckill - seckill project - (11) project summary
2022 polymerization process examination questions and polymerization process examination skills
Appium自动化测试框架
在 .NET 6 项目中使用 Startup.cs
For instruction, uploading pictures and display effect optimization of simple wechat applet development
[Apple Push] IMessage group sending condition document (push certificate) development tool pushnotification
Recursive use and multi-dimensional array object to one-dimensional array object
Download and install captura and configure ffmpeg in captura
2022-07-02:以下go语言代码输出什么?A:编译错误;B:Panic;C:NaN。 package main import “fmt“ func main() { var a =