当前位置:网站首页>[combinatorics] combinatorial identities (review of eight combinatorial identities | product of combinatorial identities 1 | proof | use scenario | general method for finding combinatorial numbers)
[combinatorics] combinatorial identities (review of eight combinatorial identities | product of combinatorial identities 1 | proof | use scenario | general method for finding combinatorial numbers)
2022-07-03 16:01:00 【Programmer community】
List of articles
- One 、 Review of combinatorial identities ( 8 individual )
- Two 、 Combinatorial identity ( product )
- 3、 ... and 、 Combinatorial identity ( product ) prove
- Four 、 Combinatorial identity ( product ) purpose 、 A general method for finding combinatorial numbers
Combinatorial identity reference blog :
- 【 Combinatorial mathematics 】 Combinatorial identity ( Recurrence Combinatorial identity | Change the next term to sum Combinatorial identity Simple and | Change the next term to sum Combinatorial identity Staggered and )
- 【 Combinatorial mathematics 】 Combinatorial identity ( Change the next term to sum 3 Combinatorial identity | Change the next term to sum 4 Combinatorial identity | binomial theorem + Derivation Prove the combinatorial identity | Use known combinatorial identities to prove combinatorial identities )
One 、 Review of combinatorial identities ( 8 individual )
1 . Combinatorial identity ( recursion ) :
( 1 ) recursion 1 :
(
n
k
)
=
(
n
n
−
k
)
\dbinom{n}{k} = \dbinom{n}{n-k}
(kn)=(n−kn)
( 2 ) recursion 2 :
(
n
k
)
=
n
k
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dfrac{n}{k} \dbinom{n - 1}{k - 1}
(kn)=kn(k−1n−1)
( 3 ) recursion 3 ( Pascal / Yang Hui's trigonometric formula ) :
(
n
k
)
=
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn)=(kn−1)+(k−1n−1)
2 . Review the combinatorial identities of summation under four variables : The combinatorial identity introduced earlier The number of combinations in
(
n
k
)
\dbinom{n}{k}
(kn) , Is the next item
k
k
k Have been accumulating changes , have
∑
k
=
0
n
\sum\limits_{k=0}^{n}
k=0∑n Cumulative property , Previous item
n
n
n It is the same. ;
( 1 ) Simple and :
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n
( 2 ) Staggered and :
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
=
0
\sum\limits_{k=0}^{n} (-1)^k \dbinom{n}{k} = 0
k=0∑n(−1)k(kn)=0
( 3 ) Change the next term to sum 3 :
∑
k
=
0
n
k
(
n
k
)
=
n
2
n
−
1
\sum\limits_{k=0}^{n} k \dbinom{n}{k} = n 2^{n-1}
k=0∑nk(kn)=n2n−1
( 4 ) Change the next term to sum 4 :
∑
k
=
0
n
k
2
(
n
k
)
=
n
(
n
+
1
)
2
n
−
2
\sum_{k=0}^{n} k^2 \dbinom{n}{k} = n ( n+1 ) 2^{n-2}
∑k=0nk2(kn)=n(n+1)2n−2
3 . Change the upper term to sum :
∑
l
=
0
n
(
l
k
)
=
(
n
+
1
k
+
1
)
\sum\limits_{l=0}^{n} \dbinom{l}{k} = \dbinom{n + 1}{k + 1}
l=0∑n(kl)=(k+1n+1)
Two 、 Combinatorial identity ( product )
Combinatorial identity ( product ) :
(
n
r
)
(
r
k
)
=
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n}{r}\dbinom{r}{k} = \dbinom{n }{k}\dbinom{n-k}{r-k}
(rn)(kr)=(kn)(r−kn−k)
3、 ... and 、 Combinatorial identity ( product ) prove
1 .
(
n
r
)
(
r
k
)
\dbinom{n}{r}\dbinom{r}{k}
(rn)(kr) Combinatorial number analysis : This is the multiplication of two combinatorial numbers , It uses Step by step counting principle , Corresponding multiplication rule ;
( 1 ) First step :
(
n
r
)
\dbinom{n}{r}
(rn) from
n
n
n Of the elements
r
r
r Elements ;
( 2 ) The second step :
(
r
k
)
\dbinom{r}{k}
(kr) from
r
r
r Of the elements
k
k
k Elements ;
2 . The above choices may be repeated , The following counterexample can prove :
aggregate
S
=
{
a
,
b
,
c
,
d
,
e
}
S = \{ a, b, c, d, e \}
S={ a,b,c,d,e} , From this set
S
S
S Choose from
4
4
4 Elements , Two chestnuts :
①
{
a
,
b
,
c
,
d
}
\{a, b, c, d\}
{ a,b,c,d} , There are subsets
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d}
②
{
b
,
c
,
d
,
e
}
\{ b,c,d,e \}
{ b,c,d,e} , There are subsets
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d}
So from
5
5
5 Of the elements
4
4
4 individual , And then from
4
4
4 Of the elements
3
3
3 individual , Last There is a case of selecting duplicate subsets , There are two repetitions
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d} ;
3 .
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n }{k}\dbinom{n-k}{r-k}
(kn)(r−kn−k) Combinatorial number analysis :
(
n
k
)
\dbinom{n }{k}
(kn) Express from
n
n
n Of the elements , Directly select
k
k
k Elements come out , See how many methods there are ; chestnuts : Above
5
5
5 Direct selection in meta set
3
3
3 Number of element subsets ;
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) yes The repeatability of the above selection method , How many times does each selection method appear ; chestnuts : Calculate each of the above
3
3
3 The number of repetitions of the element subset selection scheme ;
4 . Now let's start to study the above
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) How is the repeatability calculated
Take the chestnuts above for example ,
3
3
3 A subset of
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d} The reason why it happened twice is ,
stay
4
4
4 A subset of
{
a
,
b
,
c
,
d
}
\{a, b, c, d\}
{ a,b,c,d} and
{
b
,
c
,
d
,
e
}
\{ b,c,d,e \}
{ b,c,d,e} All contain the same
3
3
3 A subset of
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d} ,
In the above
4
4
4 Subsets , except
3
3
3 Outside the subset , There are other added elements ,
- stay
{
a
,
b
,
c
,
d
}
\{a, b, c, d\}
{ a,b,c,d} in , Added
a
a
a Elements
- stay
{
b
,
c
,
d
,
e
}
\{b,c,d,e\}
{ b,c,d,e} in , Added
e
e
e Elements
stay
3
3
3 Subsets , Add different elements , It can become Different
4
4
4 A subset of , Here we directly ask for
3
3
3 How many ways to add subsets , constitute
4
4
4 Number of subsets ;
The added element is from The original
S
=
{
a
,
b
,
c
,
d
,
e
}
S = \{ a, b, c, d, e \}
S={ a,b,c,d,e} Collection , Get rid of
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d}
3
3
3 Selected from the elements after the subset ,
The selected set has
5
−
3
=
2
5-3 = 2
5−3=2 Elements ( It's equivalent to a formula
n
−
k
n-k
n−k ) ,
The number selected is
4
−
3
=
1
4-3=1
4−3=1 individual ( It's equivalent to a formula
r
−
k
r-k
r−k ) ;
from
n
−
k
n-k
n−k Of the elements
r
−
k
r-k
r−k Elements , The number of programmes is
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) ;
5 .
(
n
r
)
(
r
k
)
=
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n}{r}\dbinom{r}{k} = \dbinom{n }{k}\dbinom{n-k}{r-k}
(rn)(kr)=(kn)(r−kn−k) The left and right sides of are the counting results of the same combined number , So it's equal
Four 、 Combinatorial identity ( product ) purpose 、 A general method for finding combinatorial numbers
Combinatorial identity ( product ) :
(
n
r
)
(
r
k
)
=
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n}{r}\dbinom{r}{k} = \dbinom{n }{k}\dbinom{n-k}{r-k}
(rn)(kr)=(kn)(r−kn−k)
encounter
(
n
r
)
(
r
k
)
\dbinom{n}{r}\dbinom{r}{k}
(rn)(kr) Product first , The case of re summation , If the sum is right
r
r
r Words of peace , namely
∑
r
=
0
n
\sum\limits_{r=0}^{n}
r=0∑n , as follows :
Yes
∑
r
=
k
n
(
n
r
)
(
r
k
)
\sum\limits_{r=k}^{n}\dbinom{n}{r}\dbinom{r}{k}
r=k∑n(rn)(kr) Sum up ;
Yes
r
r
r Sum up ,
r
r
r It's from
k
k
k Until
n
n
n ,
Previous items
(
n
r
)
\dbinom{n}{r}
(rn) Next is the variable ,
The following items
(
r
k
)
\dbinom{r}{k}
(kr) The last item is a variable ,
The previous general method : This makes it impossible to use the previous calculation method , The previous calculation method is , Constant to
∑
\sum
∑ Extract outside the symbol , The rest turns into Basic summation
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n , Or known Combinatorial identity , Combination formula , To simplify ;
How to deal with the situation : Two combinatorial numbers , One is that the next item is the cumulative variable , One is that the previous term is an additive variable , Multiply two combinatorial numbers The situation of ;
Above The product combination identity can change the above situation into Next Is the case of cumulative variables ;
Use the above Product combinatorial identity , Turn into :
∑
r
=
k
n
(
n
r
)
(
r
k
)
=
∑
r
=
k
n
(
n
k
)
(
n
−
k
r
−
k
)
\sum\limits_{r=k}^{n}\dbinom{n}{r}\dbinom{r}{k} = \sum\limits_{r=k}^{n} \dbinom{n }{k}\dbinom{n-k}{r-k}
r=k∑n(rn)(kr)=r=k∑n(kn)(r−kn−k)
After obtaining the above formula , Items obtained by analysis
∑
r
=
k
n
(
n
k
)
(
n
−
k
r
−
k
)
\sum\limits_{r=k}^{n} \dbinom{n }{k}\dbinom{n-k}{r-k}
r=k∑n(kn)(r−kn−k) ,
Ahead
(
n
k
)
\dbinom{n }{k}
(kn) Item and Summation variables
r
r
r irrelevant ,
hinder
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) The next item is related to Summation variables
r
r
r relevant ;
therefore
(
n
k
)
\dbinom{n }{k}
(kn) term You can extract
∑
\sum
∑ Outside the symbol ;
=
(
n
k
)
∑
r
=
k
n
(
n
−
k
r
−
k
)
=\dbinom{n }{k} \sum\limits_{r=k}^{n} \dbinom{n-k}{r-k}
=(kn)r=k∑n(r−kn−k)
The above formula can be used Variable limit , Substitution calculation ; Use
r
′
=
r
−
k
r' = r-k
r′=r−k Replace
r
r
r ;
original
r
r
r The range of phi is zero
k
k
k ~
n
n
n , be
r
′
=
r
−
k
r' = r-k
r′=r−k The range of phi is zero
0
0
0 ~
n
−
k
n-k
n−k , The substitution result is as follows :
=
(
n
k
)
∑
r
′
=
0
n
−
k
(
n
−
k
r
′
)
=\dbinom{n }{k} \sum\limits_{r'=0}^{n - k} \dbinom{n-k}{r'}
=(kn)r′=0∑n−k(r′n−k)
according to Basic summation
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n , Calculation
∑
r
′
=
0
n
−
k
(
n
−
k
r
′
)
\sum\limits_{r'=0}^{n - k} \dbinom{n-k}{r'}
r′=0∑n−k(r′n−k) As the result of the
2
n
−
k
2^{n-k}
2n−k ; The final calculation result is :
=
(
n
k
)
∑
r
′
=
0
n
−
k
(
n
−
k
r
′
)
=
2
n
−
k
(
n
k
)
=\dbinom{n }{k} \sum\limits_{r'=0}^{n - k} \dbinom{n-k}{r'} = 2 ^{n-k}\dbinom{n }{k}
=(kn)r′=0∑n−k(r′n−k)=2n−k(kn)
边栏推荐
- 关于网页中的文本选择以及统计选中文本长度
- 2022年Q2加密市场投融资报告:GameFi成为投资关键词
- CString的GetBuffer和ReleaseBuffer使用说明
- 《微服务设计》读书笔记(下)
- 《天天数学》连载56:二月二十五日
- Microservices Seata distributed transactions
- “用Android复刻Apple产品UI”(2)——丝滑的AppStore卡片转场动画
- C language brush questions ~leetcode and simple questions of niuke.com
- WinDbg分析dump文件
- 嵌入式开发:避免开源软件的7个理由
猜你喜欢
![[system safety] 43 PowerShell malicious code detection series (5) automatic extraction of ten thousand words from abstract syntax tree](/img/cd/00954b9c592c253d42e6a3b8298999.jpg)
[system safety] 43 PowerShell malicious code detection series (5) automatic extraction of ten thousand words from abstract syntax tree
![App mobile terminal test [3] ADB command](/img/f1/4bff6e66b77d0f867bf7237019e982.png)
App mobile terminal test [3] ADB command

App移动端测试【3】ADB命令

ASEMI整流桥UMB10F参数,UMB10F规格,UMB10F封装

About text selection in web pages and counting the length of selected text

nifi从入门到实战(保姆级教程)——flow

Project -- high concurrency memory pool

软件逆向破解入门系列(1)—xdbg32/64的常见配置及功能窗口

The accept attribute of the El upload upload component restricts the file type (detailed explanation of the case)

Find mapping relationship
随机推荐
《微服务设计》读书笔记(上)
UnityShader——MaterialCapture材质捕捉效果 (翡翠斧头)
软件逆向破解入门系列(1)—xdbg32/64的常见配置及功能窗口
大csv拆分和合并
Download and install common programs using AUR
Creation and destruction of function stack frames
Break through 1million, sword finger 2million!
软件安装信息、系统服务在注册表中的位置
Mongodb installation and basic operation
String functions that you need to know
Famous blackmail software stops operation and releases decryption keys. Most hospital IOT devices have security vulnerabilities | global network security hotspot on February 14
Low level version of drawing interface (explain each step in detail)
子类隐藏父类的同名函数
阿飞的期望
MB10M-ASEMI整流桥MB10M
Reading notes of "micro service design" (Part 2)
Brush questions -- sword finger offer
Microservice sentinel flow control degradation
Custom annotation
Create gradle project