当前位置:网站首页>[combinatorics] combinatorial identities (review of eight combinatorial identities | product of combinatorial identities 1 | proof | use scenario | general method for finding combinatorial numbers)
[combinatorics] combinatorial identities (review of eight combinatorial identities | product of combinatorial identities 1 | proof | use scenario | general method for finding combinatorial numbers)
2022-07-03 16:01:00 【Programmer community】
List of articles
- One 、 Review of combinatorial identities ( 8 individual )
- Two 、 Combinatorial identity ( product )
- 3、 ... and 、 Combinatorial identity ( product ) prove
- Four 、 Combinatorial identity ( product ) purpose 、 A general method for finding combinatorial numbers
Combinatorial identity reference blog :
- 【 Combinatorial mathematics 】 Combinatorial identity ( Recurrence Combinatorial identity | Change the next term to sum Combinatorial identity Simple and | Change the next term to sum Combinatorial identity Staggered and )
- 【 Combinatorial mathematics 】 Combinatorial identity ( Change the next term to sum 3 Combinatorial identity | Change the next term to sum 4 Combinatorial identity | binomial theorem + Derivation Prove the combinatorial identity | Use known combinatorial identities to prove combinatorial identities )
One 、 Review of combinatorial identities ( 8 individual )
1 . Combinatorial identity ( recursion ) :
( 1 ) recursion 1 :
(
n
k
)
=
(
n
n
−
k
)
\dbinom{n}{k} = \dbinom{n}{n-k}
(kn)=(n−kn)
( 2 ) recursion 2 :
(
n
k
)
=
n
k
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dfrac{n}{k} \dbinom{n - 1}{k - 1}
(kn)=kn(k−1n−1)
( 3 ) recursion 3 ( Pascal / Yang Hui's trigonometric formula ) :
(
n
k
)
=
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn)=(kn−1)+(k−1n−1)
2 . Review the combinatorial identities of summation under four variables : The combinatorial identity introduced earlier The number of combinations in
(
n
k
)
\dbinom{n}{k}
(kn) , Is the next item
k
k
k Have been accumulating changes , have
∑
k
=
0
n
\sum\limits_{k=0}^{n}
k=0∑n Cumulative property , Previous item
n
n
n It is the same. ;
( 1 ) Simple and :
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n
( 2 ) Staggered and :
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
=
0
\sum\limits_{k=0}^{n} (-1)^k \dbinom{n}{k} = 0
k=0∑n(−1)k(kn)=0
( 3 ) Change the next term to sum 3 :
∑
k
=
0
n
k
(
n
k
)
=
n
2
n
−
1
\sum\limits_{k=0}^{n} k \dbinom{n}{k} = n 2^{n-1}
k=0∑nk(kn)=n2n−1
( 4 ) Change the next term to sum 4 :
∑
k
=
0
n
k
2
(
n
k
)
=
n
(
n
+
1
)
2
n
−
2
\sum_{k=0}^{n} k^2 \dbinom{n}{k} = n ( n+1 ) 2^{n-2}
∑k=0nk2(kn)=n(n+1)2n−2
3 . Change the upper term to sum :
∑
l
=
0
n
(
l
k
)
=
(
n
+
1
k
+
1
)
\sum\limits_{l=0}^{n} \dbinom{l}{k} = \dbinom{n + 1}{k + 1}
l=0∑n(kl)=(k+1n+1)
Two 、 Combinatorial identity ( product )
Combinatorial identity ( product ) :
(
n
r
)
(
r
k
)
=
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n}{r}\dbinom{r}{k} = \dbinom{n }{k}\dbinom{n-k}{r-k}
(rn)(kr)=(kn)(r−kn−k)
3、 ... and 、 Combinatorial identity ( product ) prove
1 .
(
n
r
)
(
r
k
)
\dbinom{n}{r}\dbinom{r}{k}
(rn)(kr) Combinatorial number analysis : This is the multiplication of two combinatorial numbers , It uses Step by step counting principle , Corresponding multiplication rule ;
( 1 ) First step :
(
n
r
)
\dbinom{n}{r}
(rn) from
n
n
n Of the elements
r
r
r Elements ;
( 2 ) The second step :
(
r
k
)
\dbinom{r}{k}
(kr) from
r
r
r Of the elements
k
k
k Elements ;
2 . The above choices may be repeated , The following counterexample can prove :
aggregate
S
=
{
a
,
b
,
c
,
d
,
e
}
S = \{ a, b, c, d, e \}
S={ a,b,c,d,e} , From this set
S
S
S Choose from
4
4
4 Elements , Two chestnuts :
①
{
a
,
b
,
c
,
d
}
\{a, b, c, d\}
{ a,b,c,d} , There are subsets
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d}
②
{
b
,
c
,
d
,
e
}
\{ b,c,d,e \}
{ b,c,d,e} , There are subsets
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d}
So from
5
5
5 Of the elements
4
4
4 individual , And then from
4
4
4 Of the elements
3
3
3 individual , Last There is a case of selecting duplicate subsets , There are two repetitions
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d} ;
3 .
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n }{k}\dbinom{n-k}{r-k}
(kn)(r−kn−k) Combinatorial number analysis :
(
n
k
)
\dbinom{n }{k}
(kn) Express from
n
n
n Of the elements , Directly select
k
k
k Elements come out , See how many methods there are ; chestnuts : Above
5
5
5 Direct selection in meta set
3
3
3 Number of element subsets ;
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) yes The repeatability of the above selection method , How many times does each selection method appear ; chestnuts : Calculate each of the above
3
3
3 The number of repetitions of the element subset selection scheme ;
4 . Now let's start to study the above
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) How is the repeatability calculated
Take the chestnuts above for example ,
3
3
3 A subset of
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d} The reason why it happened twice is ,
stay
4
4
4 A subset of
{
a
,
b
,
c
,
d
}
\{a, b, c, d\}
{ a,b,c,d} and
{
b
,
c
,
d
,
e
}
\{ b,c,d,e \}
{ b,c,d,e} All contain the same
3
3
3 A subset of
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d} ,
In the above
4
4
4 Subsets , except
3
3
3 Outside the subset , There are other added elements ,
- stay
{
a
,
b
,
c
,
d
}
\{a, b, c, d\}
{ a,b,c,d} in , Added
a
a
a Elements
- stay
{
b
,
c
,
d
,
e
}
\{b,c,d,e\}
{ b,c,d,e} in , Added
e
e
e Elements
stay
3
3
3 Subsets , Add different elements , It can become Different
4
4
4 A subset of , Here we directly ask for
3
3
3 How many ways to add subsets , constitute
4
4
4 Number of subsets ;
The added element is from The original
S
=
{
a
,
b
,
c
,
d
,
e
}
S = \{ a, b, c, d, e \}
S={ a,b,c,d,e} Collection , Get rid of
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d}
3
3
3 Selected from the elements after the subset ,
The selected set has
5
−
3
=
2
5-3 = 2
5−3=2 Elements ( It's equivalent to a formula
n
−
k
n-k
n−k ) ,
The number selected is
4
−
3
=
1
4-3=1
4−3=1 individual ( It's equivalent to a formula
r
−
k
r-k
r−k ) ;
from
n
−
k
n-k
n−k Of the elements
r
−
k
r-k
r−k Elements , The number of programmes is
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) ;
5 .
(
n
r
)
(
r
k
)
=
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n}{r}\dbinom{r}{k} = \dbinom{n }{k}\dbinom{n-k}{r-k}
(rn)(kr)=(kn)(r−kn−k) The left and right sides of are the counting results of the same combined number , So it's equal
Four 、 Combinatorial identity ( product ) purpose 、 A general method for finding combinatorial numbers
Combinatorial identity ( product ) :
(
n
r
)
(
r
k
)
=
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n}{r}\dbinom{r}{k} = \dbinom{n }{k}\dbinom{n-k}{r-k}
(rn)(kr)=(kn)(r−kn−k)
encounter
(
n
r
)
(
r
k
)
\dbinom{n}{r}\dbinom{r}{k}
(rn)(kr) Product first , The case of re summation , If the sum is right
r
r
r Words of peace , namely
∑
r
=
0
n
\sum\limits_{r=0}^{n}
r=0∑n , as follows :
Yes
∑
r
=
k
n
(
n
r
)
(
r
k
)
\sum\limits_{r=k}^{n}\dbinom{n}{r}\dbinom{r}{k}
r=k∑n(rn)(kr) Sum up ;
Yes
r
r
r Sum up ,
r
r
r It's from
k
k
k Until
n
n
n ,
Previous items
(
n
r
)
\dbinom{n}{r}
(rn) Next is the variable ,
The following items
(
r
k
)
\dbinom{r}{k}
(kr) The last item is a variable ,
The previous general method : This makes it impossible to use the previous calculation method , The previous calculation method is , Constant to
∑
\sum
∑ Extract outside the symbol , The rest turns into Basic summation
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n , Or known Combinatorial identity , Combination formula , To simplify ;
How to deal with the situation : Two combinatorial numbers , One is that the next item is the cumulative variable , One is that the previous term is an additive variable , Multiply two combinatorial numbers The situation of ;
Above The product combination identity can change the above situation into Next Is the case of cumulative variables ;
Use the above Product combinatorial identity , Turn into :
∑
r
=
k
n
(
n
r
)
(
r
k
)
=
∑
r
=
k
n
(
n
k
)
(
n
−
k
r
−
k
)
\sum\limits_{r=k}^{n}\dbinom{n}{r}\dbinom{r}{k} = \sum\limits_{r=k}^{n} \dbinom{n }{k}\dbinom{n-k}{r-k}
r=k∑n(rn)(kr)=r=k∑n(kn)(r−kn−k)
After obtaining the above formula , Items obtained by analysis
∑
r
=
k
n
(
n
k
)
(
n
−
k
r
−
k
)
\sum\limits_{r=k}^{n} \dbinom{n }{k}\dbinom{n-k}{r-k}
r=k∑n(kn)(r−kn−k) ,
Ahead
(
n
k
)
\dbinom{n }{k}
(kn) Item and Summation variables
r
r
r irrelevant ,
hinder
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) The next item is related to Summation variables
r
r
r relevant ;
therefore
(
n
k
)
\dbinom{n }{k}
(kn) term You can extract
∑
\sum
∑ Outside the symbol ;
=
(
n
k
)
∑
r
=
k
n
(
n
−
k
r
−
k
)
=\dbinom{n }{k} \sum\limits_{r=k}^{n} \dbinom{n-k}{r-k}
=(kn)r=k∑n(r−kn−k)
The above formula can be used Variable limit , Substitution calculation ; Use
r
′
=
r
−
k
r' = r-k
r′=r−k Replace
r
r
r ;
original
r
r
r The range of phi is zero
k
k
k ~
n
n
n , be
r
′
=
r
−
k
r' = r-k
r′=r−k The range of phi is zero
0
0
0 ~
n
−
k
n-k
n−k , The substitution result is as follows :
=
(
n
k
)
∑
r
′
=
0
n
−
k
(
n
−
k
r
′
)
=\dbinom{n }{k} \sum\limits_{r'=0}^{n - k} \dbinom{n-k}{r'}
=(kn)r′=0∑n−k(r′n−k)
according to Basic summation
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n , Calculation
∑
r
′
=
0
n
−
k
(
n
−
k
r
′
)
\sum\limits_{r'=0}^{n - k} \dbinom{n-k}{r'}
r′=0∑n−k(r′n−k) As the result of the
2
n
−
k
2^{n-k}
2n−k ; The final calculation result is :
=
(
n
k
)
∑
r
′
=
0
n
−
k
(
n
−
k
r
′
)
=
2
n
−
k
(
n
k
)
=\dbinom{n }{k} \sum\limits_{r'=0}^{n - k} \dbinom{n-k}{r'} = 2 ^{n-k}\dbinom{n }{k}
=(kn)r′=0∑n−k(r′n−k)=2n−k(kn)
边栏推荐
- Detailed explanation of string function and string function with unlimited length
- 请求头不同国家和语言的表示
- Go语言自学系列 | golang中的if else语句
- WinDbg analysis dump file
- App mobile terminal test [3] ADB command
- Problems of CString in multithreading
- 利用MySQL中的乐观锁和悲观锁实现分布式锁
- VC下Unicode和ANSI互转,CStringW和std::string互转
- 潘多拉 IOT 开发板学习(HAL 库)—— 实验5 外部中断实验(学习笔记)
- 近视:摘镜or配镜?这些问题必须先了解清楚
猜你喜欢
From the 18th line to the first line, the new story of the network security industry
App mobile terminal test [5] file writing and reading
子类隐藏父类的同名函数
[redis foundation] understand redis persistence mechanism together (rdb+aof graphic explanation)
How to use AAB to APK and APK to AAB of Google play apps on the shelves
How idea starts run dashboard
C language brush questions ~leetcode and simple questions of niuke.com
"Remake Apple product UI with Android" (2) -- silky Appstore card transition animation
秒殺系統3-商品列錶和商品詳情
App移动端测试【3】ADB命令
随机推荐
CString在多线程中的问题
Q2 encryption market investment and financing report in 2022: gamefi becomes an investment keyword
From the 18th line to the first line, the new story of the network security industry
互斥对象与临界区的区别
The difference between RAR and zip files
App移动端测试【4】apk的操纵
无心剑中译泰戈尔《漂鸟集(1~10)》
C language brush questions ~leetcode and simple questions of niuke.com
Seckill system 2 redis solves the problem of distributed session
"Remake Apple product UI with Android" (3) - elegant statistical chart
nifi从入门到实战(保姆级教程)——flow
[list to map] collectors Tomap syntax sharing (case practice)
Detailed explanation of string function and string function with unlimited length
2022年Q2加密市场投融资报告:GameFi成为投资关键词
Automatic generation of client code from flask server code -- Introduction to flask native stubs Library
Persisting in output requires continuous learning
用通达信炒股开户安全吗?
How are integer and floating-point types stored in memory
Popular understanding of ovo and ovr
Distributed task scheduling XXL job