当前位置:网站首页>[combinatorics] combinatorial identities (review of eight combinatorial identities | product of combinatorial identities 1 | proof | use scenario | general method for finding combinatorial numbers)
[combinatorics] combinatorial identities (review of eight combinatorial identities | product of combinatorial identities 1 | proof | use scenario | general method for finding combinatorial numbers)
2022-07-03 16:01:00 【Programmer community】
List of articles
- One 、 Review of combinatorial identities ( 8 individual )
- Two 、 Combinatorial identity ( product )
- 3、 ... and 、 Combinatorial identity ( product ) prove
- Four 、 Combinatorial identity ( product ) purpose 、 A general method for finding combinatorial numbers
Combinatorial identity reference blog :
- 【 Combinatorial mathematics 】 Combinatorial identity ( Recurrence Combinatorial identity | Change the next term to sum Combinatorial identity Simple and | Change the next term to sum Combinatorial identity Staggered and )
- 【 Combinatorial mathematics 】 Combinatorial identity ( Change the next term to sum 3 Combinatorial identity | Change the next term to sum 4 Combinatorial identity | binomial theorem + Derivation Prove the combinatorial identity | Use known combinatorial identities to prove combinatorial identities )
One 、 Review of combinatorial identities ( 8 individual )
1 . Combinatorial identity ( recursion ) :
( 1 ) recursion 1 :
(
n
k
)
=
(
n
n
−
k
)
\dbinom{n}{k} = \dbinom{n}{n-k}
(kn)=(n−kn)
( 2 ) recursion 2 :
(
n
k
)
=
n
k
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dfrac{n}{k} \dbinom{n - 1}{k - 1}
(kn)=kn(k−1n−1)
( 3 ) recursion 3 ( Pascal / Yang Hui's trigonometric formula ) :
(
n
k
)
=
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn)=(kn−1)+(k−1n−1)
2 . Review the combinatorial identities of summation under four variables : The combinatorial identity introduced earlier The number of combinations in
(
n
k
)
\dbinom{n}{k}
(kn) , Is the next item
k
k
k Have been accumulating changes , have
∑
k
=
0
n
\sum\limits_{k=0}^{n}
k=0∑n Cumulative property , Previous item
n
n
n It is the same. ;
( 1 ) Simple and :
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n
( 2 ) Staggered and :
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
=
0
\sum\limits_{k=0}^{n} (-1)^k \dbinom{n}{k} = 0
k=0∑n(−1)k(kn)=0
( 3 ) Change the next term to sum 3 :
∑
k
=
0
n
k
(
n
k
)
=
n
2
n
−
1
\sum\limits_{k=0}^{n} k \dbinom{n}{k} = n 2^{n-1}
k=0∑nk(kn)=n2n−1
( 4 ) Change the next term to sum 4 :
∑
k
=
0
n
k
2
(
n
k
)
=
n
(
n
+
1
)
2
n
−
2
\sum_{k=0}^{n} k^2 \dbinom{n}{k} = n ( n+1 ) 2^{n-2}
∑k=0nk2(kn)=n(n+1)2n−2
3 . Change the upper term to sum :
∑
l
=
0
n
(
l
k
)
=
(
n
+
1
k
+
1
)
\sum\limits_{l=0}^{n} \dbinom{l}{k} = \dbinom{n + 1}{k + 1}
l=0∑n(kl)=(k+1n+1)
Two 、 Combinatorial identity ( product )
Combinatorial identity ( product ) :
(
n
r
)
(
r
k
)
=
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n}{r}\dbinom{r}{k} = \dbinom{n }{k}\dbinom{n-k}{r-k}
(rn)(kr)=(kn)(r−kn−k)
3、 ... and 、 Combinatorial identity ( product ) prove
1 .
(
n
r
)
(
r
k
)
\dbinom{n}{r}\dbinom{r}{k}
(rn)(kr) Combinatorial number analysis : This is the multiplication of two combinatorial numbers , It uses Step by step counting principle , Corresponding multiplication rule ;
( 1 ) First step :
(
n
r
)
\dbinom{n}{r}
(rn) from
n
n
n Of the elements
r
r
r Elements ;
( 2 ) The second step :
(
r
k
)
\dbinom{r}{k}
(kr) from
r
r
r Of the elements
k
k
k Elements ;
2 . The above choices may be repeated , The following counterexample can prove :
aggregate
S
=
{
a
,
b
,
c
,
d
,
e
}
S = \{ a, b, c, d, e \}
S={ a,b,c,d,e} , From this set
S
S
S Choose from
4
4
4 Elements , Two chestnuts :
①
{
a
,
b
,
c
,
d
}
\{a, b, c, d\}
{ a,b,c,d} , There are subsets
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d}
②
{
b
,
c
,
d
,
e
}
\{ b,c,d,e \}
{ b,c,d,e} , There are subsets
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d}
So from
5
5
5 Of the elements
4
4
4 individual , And then from
4
4
4 Of the elements
3
3
3 individual , Last There is a case of selecting duplicate subsets , There are two repetitions
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d} ;
3 .
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n }{k}\dbinom{n-k}{r-k}
(kn)(r−kn−k) Combinatorial number analysis :
(
n
k
)
\dbinom{n }{k}
(kn) Express from
n
n
n Of the elements , Directly select
k
k
k Elements come out , See how many methods there are ; chestnuts : Above
5
5
5 Direct selection in meta set
3
3
3 Number of element subsets ;
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) yes The repeatability of the above selection method , How many times does each selection method appear ; chestnuts : Calculate each of the above
3
3
3 The number of repetitions of the element subset selection scheme ;
4 . Now let's start to study the above
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) How is the repeatability calculated
Take the chestnuts above for example ,
3
3
3 A subset of
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d} The reason why it happened twice is ,
stay
4
4
4 A subset of
{
a
,
b
,
c
,
d
}
\{a, b, c, d\}
{ a,b,c,d} and
{
b
,
c
,
d
,
e
}
\{ b,c,d,e \}
{ b,c,d,e} All contain the same
3
3
3 A subset of
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d} ,
In the above
4
4
4 Subsets , except
3
3
3 Outside the subset , There are other added elements ,
- stay
{
a
,
b
,
c
,
d
}
\{a, b, c, d\}
{ a,b,c,d} in , Added
a
a
a Elements
- stay
{
b
,
c
,
d
,
e
}
\{b,c,d,e\}
{ b,c,d,e} in , Added
e
e
e Elements
stay
3
3
3 Subsets , Add different elements , It can become Different
4
4
4 A subset of , Here we directly ask for
3
3
3 How many ways to add subsets , constitute
4
4
4 Number of subsets ;
The added element is from The original
S
=
{
a
,
b
,
c
,
d
,
e
}
S = \{ a, b, c, d, e \}
S={ a,b,c,d,e} Collection , Get rid of
{
b
,
c
,
d
}
\{ b,c,d \}
{ b,c,d}
3
3
3 Selected from the elements after the subset ,
The selected set has
5
−
3
=
2
5-3 = 2
5−3=2 Elements ( It's equivalent to a formula
n
−
k
n-k
n−k ) ,
The number selected is
4
−
3
=
1
4-3=1
4−3=1 individual ( It's equivalent to a formula
r
−
k
r-k
r−k ) ;
from
n
−
k
n-k
n−k Of the elements
r
−
k
r-k
r−k Elements , The number of programmes is
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) ;
5 .
(
n
r
)
(
r
k
)
=
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n}{r}\dbinom{r}{k} = \dbinom{n }{k}\dbinom{n-k}{r-k}
(rn)(kr)=(kn)(r−kn−k) The left and right sides of are the counting results of the same combined number , So it's equal
Four 、 Combinatorial identity ( product ) purpose 、 A general method for finding combinatorial numbers
Combinatorial identity ( product ) :
(
n
r
)
(
r
k
)
=
(
n
k
)
(
n
−
k
r
−
k
)
\dbinom{n}{r}\dbinom{r}{k} = \dbinom{n }{k}\dbinom{n-k}{r-k}
(rn)(kr)=(kn)(r−kn−k)
encounter
(
n
r
)
(
r
k
)
\dbinom{n}{r}\dbinom{r}{k}
(rn)(kr) Product first , The case of re summation , If the sum is right
r
r
r Words of peace , namely
∑
r
=
0
n
\sum\limits_{r=0}^{n}
r=0∑n , as follows :
Yes
∑
r
=
k
n
(
n
r
)
(
r
k
)
\sum\limits_{r=k}^{n}\dbinom{n}{r}\dbinom{r}{k}
r=k∑n(rn)(kr) Sum up ;
Yes
r
r
r Sum up ,
r
r
r It's from
k
k
k Until
n
n
n ,
Previous items
(
n
r
)
\dbinom{n}{r}
(rn) Next is the variable ,
The following items
(
r
k
)
\dbinom{r}{k}
(kr) The last item is a variable ,
The previous general method : This makes it impossible to use the previous calculation method , The previous calculation method is , Constant to
∑
\sum
∑ Extract outside the symbol , The rest turns into Basic summation
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n , Or known Combinatorial identity , Combination formula , To simplify ;
How to deal with the situation : Two combinatorial numbers , One is that the next item is the cumulative variable , One is that the previous term is an additive variable , Multiply two combinatorial numbers The situation of ;
Above The product combination identity can change the above situation into Next Is the case of cumulative variables ;
Use the above Product combinatorial identity , Turn into :
∑
r
=
k
n
(
n
r
)
(
r
k
)
=
∑
r
=
k
n
(
n
k
)
(
n
−
k
r
−
k
)
\sum\limits_{r=k}^{n}\dbinom{n}{r}\dbinom{r}{k} = \sum\limits_{r=k}^{n} \dbinom{n }{k}\dbinom{n-k}{r-k}
r=k∑n(rn)(kr)=r=k∑n(kn)(r−kn−k)
After obtaining the above formula , Items obtained by analysis
∑
r
=
k
n
(
n
k
)
(
n
−
k
r
−
k
)
\sum\limits_{r=k}^{n} \dbinom{n }{k}\dbinom{n-k}{r-k}
r=k∑n(kn)(r−kn−k) ,
Ahead
(
n
k
)
\dbinom{n }{k}
(kn) Item and Summation variables
r
r
r irrelevant ,
hinder
(
n
−
k
r
−
k
)
\dbinom{n-k}{r-k}
(r−kn−k) The next item is related to Summation variables
r
r
r relevant ;
therefore
(
n
k
)
\dbinom{n }{k}
(kn) term You can extract
∑
\sum
∑ Outside the symbol ;
=
(
n
k
)
∑
r
=
k
n
(
n
−
k
r
−
k
)
=\dbinom{n }{k} \sum\limits_{r=k}^{n} \dbinom{n-k}{r-k}
=(kn)r=k∑n(r−kn−k)
The above formula can be used Variable limit , Substitution calculation ; Use
r
′
=
r
−
k
r' = r-k
r′=r−k Replace
r
r
r ;
original
r
r
r The range of phi is zero
k
k
k ~
n
n
n , be
r
′
=
r
−
k
r' = r-k
r′=r−k The range of phi is zero
0
0
0 ~
n
−
k
n-k
n−k , The substitution result is as follows :
=
(
n
k
)
∑
r
′
=
0
n
−
k
(
n
−
k
r
′
)
=\dbinom{n }{k} \sum\limits_{r'=0}^{n - k} \dbinom{n-k}{r'}
=(kn)r′=0∑n−k(r′n−k)
according to Basic summation
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n , Calculation
∑
r
′
=
0
n
−
k
(
n
−
k
r
′
)
\sum\limits_{r'=0}^{n - k} \dbinom{n-k}{r'}
r′=0∑n−k(r′n−k) As the result of the
2
n
−
k
2^{n-k}
2n−k ; The final calculation result is :
=
(
n
k
)
∑
r
′
=
0
n
−
k
(
n
−
k
r
′
)
=
2
n
−
k
(
n
k
)
=\dbinom{n }{k} \sum\limits_{r'=0}^{n - k} \dbinom{n-k}{r'} = 2 ^{n-k}\dbinom{n }{k}
=(kn)r′=0∑n−k(r′n−k)=2n−k(kn)
边栏推荐
- Batch files: list all files in a directory with relative paths - batch files: list all files in a directory with relative paths
- From the 18th line to the first line, the new story of the network security industry
- Reading notes of "micro service design" (Part 2)
- C language brush questions ~leetcode and simple questions of niuke.com
- Salary 3000, monthly income 40000 by "video editing": people who can make money never rely on hard work!
- Microservice - Nacos registration center and configuration center
- 阿飞的期望
- Unityshader - materialcapture material capture effect (Emerald axe)
- pycharm错Error updating package list: connect timed out
- Pyinstaller is not an internal or external command, nor is it a runnable program or batch file
猜你喜欢
初试scikit-learn库
突破100万,剑指200万!
Popular understanding of ovo and ovr
请做好3年内随时失业的准备?
Shell script import and export data
Semi supervised learning
The accept attribute of the El upload upload component restricts the file type (detailed explanation of the case)
Please be prepared to lose your job at any time within 3 years?
CString getbuffer and releasebuffer instructions
Jmeter线程组功能介绍
随机推荐
Shell script import and export data
Automatic generation of client code from flask server code -- Introduction to flask native stubs Library
[combinatorics] combinatorial identities (sum of variable terms 3 combinatorial identities | sum of variable terms 4 combinatorial identities | binomial theorem + derivation to prove combinatorial ide
CString中使用百分号
Go语言自学系列 | golang中的if else if语句
The wonderful use of do{}while()
大csv拆分和合并
CString的GetBuffer和ReleaseBuffer使用说明
Unityshader - materialcapture material capture effect (Emerald axe)
Go language self-study series | if else statement in golang
Effect of ARP package on FTP dump under vxworks-6.6 system
Redis high availability and persistence
Detailed explanation of string function and string function with unlimited length
工资3000,靠“视频剪辑”月入40000:会赚钱的人,从不靠拼命!
Batch files: list all files in a directory with relative paths - batch files: list all files in a directory with relative paths
Intelij idea efficient skills (III)
Microservice - Nacos registration center and configuration center
Go语言自学系列 | golang中的if else语句
WinDbg分析dump文件
Detailed pointer advanced 2