当前位置:网站首页>[advanced mathematics] from normal vector to surface integral of the second kind
[advanced mathematics] from normal vector to surface integral of the second kind
2022-06-27 14:07:00 【Sound of the wind】
From normal vector to surface integral of the second kind
One 、 introduction
When I see the formula of the second kind of curve integral , I'm confused about the sign , The textbook gives a conclusion : When the included angle between the normal and the corresponding coordinate axis is an acute angle, it is taken as “+”, Otherwise, take the minus sign . However , Not knowing the root cause of its sign will make you uneasy , So I explored a little .
Facet projection method :
∬ S F ( x , y , z ) ⋅ d S = ∬ D y z ± P [ x ( y , z ) , y , z ] d y d z + ∬ D x z ± Q [ x , y ( x , z ) , z ] d x d z + ∬ D x y ± R [ x , y , z ( x , y ) ] d x d y \begin{aligned} \iint_S \mathbf F(x,y,z) \cdot d \mathbf S &= \iint_{D_{yz}} \pm P[x(y,z),y,z]dydz + \iint_{D_{xz}} \pm Q[x,y(x,z),z]dxdz + \iint_{D_{xy}} \pm R[x,y,z(x,y)]dxdy \end{aligned} ∬SF(x,y,z)⋅dS=∬Dyz±P[x(y,z),y,z]dydz+∬Dxz±Q[x,y(x,z),z]dxdz+∬Dxy±R[x,y,z(x,y)]dxdy
Oneness projection method :
∬ S F ( x , y , z ) ⋅ d S = ∬ S F ( x , y , z ) ⋅ n 0 ( x , y , z ) d S = ± ∬ D x y F ( x , y , z ) ⋅ ( − ∂ z ∂ x , − ∂ z ∂ y , 1 ) d x d y \begin{aligned} \iint_S \mathbf F(x,y,z) \cdot d \mathbf S &= \iint_{S} \mathbf F(x,y,z) \cdot \mathbf {n_0}(x,y,z) dS \\ &= \pm \iint_{D_{xy}} \mathbf F(x,y,z) \cdot (-\frac{\partial z}{\partial x} ,-\frac{\partial z}{\partial y} ,1)dxdy \end{aligned} ∬SF(x,y,z)⋅dS=∬SF(x,y,z)⋅n0(x,y,z)dS=±∬DxyF(x,y,z)⋅(−∂x∂z,−∂y∂z,1)dxdy
Two 、 Normal and tangent plane
1. The representation of a plane
First , Need to know , The explicit and implicit representation of a plane :
Implicit : F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0;
Explicit : z = z ( x , y ) z = z(x,y) z=z(x,y).
actually , Explicit representation is a geometric parameterization , The inverse process is implicit , Can be expressed as : F ( x , y , z ) = z − z ( x , y ) = z ( x , y ) − z = 0 \color{fuchsia}{F(x,y,z) = z-z(x,y) = z(x,y)-z=0} F(x,y,z)=z−z(x,y)=z(x,y)−z=0
2. The normal vector
Now find any point on the plane M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)
that , The normal vector at this point can be
Expressed as a gradient : ∇ F ( x , y , z ) \nabla \mathbf F(x,y,z) ∇F(x,y,z);
Or the outer product of the partial derivative is expressed as : ∂ X ∂ x × ∂ X ∂ y \frac{\partial \mathbf X}{\partial x} \times \frac{\partial \mathbf X}{\partial y} ∂x∂X×∂y∂X perhaps ∂ X ∂ y × ∂ X ∂ x \frac{\partial \mathbf X}{\partial y} \times \frac{\partial \mathbf X}{\partial x} ∂y∂X×∂x∂X, there X Is the surface coordinates , For example, in three-dimensional space , Use z(x,y) Parameterize , So the surface coordinates are **(x,y,z(x,y))**.
For the normal vector of the plane represented by the display , Can be expressed as : n ( x , y ) = ( − ∂ z ∂ x , − ∂ z ∂ y , 1 ) \color{fuchsia}{\mathbf n(x,y) = (-\frac{\partial z}{\partial x} ,-\frac{\partial z}{\partial y} ,1) } n(x,y)=(−∂x∂z,−∂y∂z,1) perhaps n ( x , y ) = ( ∂ z ∂ x , ∂ z ∂ y , − 1 ) \color{fuchsia}{\mathbf n(x,y) = (\frac{\partial z}{\partial x} ,\frac{\partial z}{\partial y} ,-1) } n(x,y)=(∂x∂z,∂y∂z,−1), At this point, the value of the normal vector is only the sum of x、y of
I have deliberately written the normal vector in two forms , This is because for a directed surface there are two sides . Now the two most critical sentences are :
1. If the z(x,y) Parameterize , Its normal vector n ( x , y ) = ( − ∂ z ∂ x , − ∂ z ∂ y , 1 ) \mathbf n(x,y) = (-\frac{\partial z}{\partial x} ,-\frac{\partial z}{\partial y} ,1) n(x,y)=(−∂x∂z,−∂y∂z,1) It must be pointing to God , n ( x , y ) = ( ∂ z ∂ x , ∂ z ∂ y , − 1 ) \mathbf n(x,y) = (\frac{\partial z}{\partial x} ,\frac{\partial z}{\partial y} ,-1) n(x,y)=(∂x∂z,∂y∂z,−1) It must point to The earth ;
1. If the z(x,y) Parameterize , Make sure that the function z = z ( x , y ) z = z(x,y) z=z(x,y) Is a single valued function .
Now, if we look at a surface , It's a right hemisphere , So using **y(x,z)** Parameterize , It is more convenient , At this point, the surface coordinates are only related to x、z of . Then its normal vector n ( x , z ) = ( − ∂ y ∂ x , 1 , − ∂ y ∂ z ) \mathbf n(x,z) = (-\frac{\partial y}{\partial x},1,-\frac{\partial y}{\partial z}) n(x,z)=(−∂x∂y,1,−∂z∂y) It must be pointing to In the east , n ( x , z ) = ( ∂ y ∂ x , − 1 , ∂ y ∂ z ) \mathbf n(x,z) = (\frac{\partial y}{\partial x},-1,\frac{\partial y}{\partial z}) n(x,z)=(∂x∂y,−1,∂z∂y) It must point to In the west .
Now, if we look at a surface , It's a front hemisphere , So using **x(y,z)** Parameterize , It is more convenient , At this point, the surface coordinates are only related to y、z of . Then its normal vector n ( y , z ) = ( 1 , − ∂ x ∂ y , − ∂ x ∂ z ) \mathbf n(y,z) = (1,-\frac{\partial x}{\partial y},-\frac{\partial x}{\partial z}) n(y,z)=(1,−∂y∂x,−∂z∂x) It must be pointing to south , n ( y , z ) = ( − 1 , ∂ x ∂ y , ∂ x ∂ z ) \mathbf n(y,z) = (-1,\frac{\partial x}{\partial y},\frac{\partial x}{\partial z}) n(y,z)=(−1,∂y∂x,∂z∂x) It must point to north .
3、 ... and 、 The second kind of surface integral
∬ S F ( x , y , z ) ⋅ d S = ∬ S F ( x , y , z ) ⋅ n 0 ( x , y , z ) d S = ∬ S { P ( x , y , z ) n 0 ( x , y , z ) ⋅ [ 1 , 0 , 0 ] + Q ( x , y , z ) n 0 ( x , y , z ) ⋅ [ 0 , 1 , 0 ] + R ( x , y , z ) n 0 ( x , y , z ) ⋅ [ 0 , 0 , 1 ] } d S = ∬ S [ P ( x , y , z ) cos α + Q ( x , y , z ) cos β + P ( x , y , z ) cos γ ] d S \begin{aligned} \iint_S \mathbf F(x,y,z) \cdot d \mathbf S &= \iint_S \mathbf F(x,y,z) \cdot \mathbf {n_0}(x,y,z) dS \\ &= \iint_S \{ P(x,y,z) \mathbf {n_0}(x,y,z) \cdot [1,0,0]+ Q(x,y,z) \mathbf {n_0}(x,y,z) \cdot [0,1,0] + R(x,y,z) \mathbf {n_0}(x,y,z) \cdot [0,0,1] \} dS\\ &= \iint_S [P(x,y,z)\cos \alpha + Q(x,y,z)\cos \beta + P(x,y,z)\cos \gamma ]dS \end{aligned} ∬SF(x,y,z)⋅dS=∬SF(x,y,z)⋅n0(x,y,z)dS=∬S{ P(x,y,z)n0(x,y,z)⋅[1,0,0]+Q(x,y,z)n0(x,y,z)⋅[0,1,0]+R(x,y,z)n0(x,y,z)⋅[0,0,1]}dS=∬S[P(x,y,z)cosα+Q(x,y,z)cosβ+P(x,y,z)cosγ]dS
The area element of a directed surface has a direction , Its orientation is determined by the side of the surface you select , For example, if a surface is selected Front side Then its normal vector must point to south , The normal vector at this point will be n ( y , z ) = ( 1 , − ∂ x ∂ y , − ∂ x ∂ z ) \mathbf n(y,z) = (1,-\frac{\partial x}{\partial y},-\frac{\partial x}{\partial z}) n(y,z)=(1,−∂y∂x,−∂z∂x).
By the way Oneness projection method and Facet projection method :
- Oneness projection method : Is the first step of the above equation , The result is projected onto a plane , Such as choice **z=z(x,y)** The parameterization of , Then the result will be projected to xOy In the plane .
- Facet projection method : Is the second step of the above equation , The three normal vectors can be parameterized in different ways , For example, for x In the axial direction P(x,y,z), Just use x=x(y,z), Then project to yOz Plane ; about z In the direction of the axis R(x,y,z), Just use z=z(x,y), Then project to xOy In the plane .
here , Through vectors [1,0,0] 、[0,1,0]、 [0,0,1] In fact, the partial derivative of the normal vector is partially zeroed . We found that , Understand... From this perspective , There is no essential difference between the unified projection method and the faceted projection method .
边栏推荐
- Integration of entry-level SSM framework based on XML configuration file
- [PHP code injection] common injectable functions of PHP language and utilization examples of PHP code injection vulnerabilities
- PCL Library - error reporting solution: cmake and Anaconda conflicts during installation
- 【OS命令注入】常见OS命令执行函数以及OS命令注入利用实例以及靶场实验—基于DVWA靶场
- 【微服务|Sentinel】热点规则|授权规则|集群流控|机器列表
- MySQL locking mechanism and four isolation levels
- 剑指 Offer II 039. 直方图最大矩形面积 单调栈
- 赛迪顾问发布《“十四五” 关键应用领域之数据库市场研究报告》(附下载)
- POSIX AIO -- Introduction to glibc version asynchronous IO
- AXI总线
猜你喜欢

PostgreSQL 15新版本特性解读(含直播问答、PPT资料汇总)

Learning records of numpy Library

OpenSSF安全计划:SBOM将驱动软件供应链安全

Kyndryl partnered with Oracle and Veritas

ENSP cloud configuration

Openssf security plan: SBOM will drive software supply chain security

Getting to know cloud native security for the first time: the best guarantee in the cloud Era

巧用redis实现点赞功能,它不比mysql香吗?

美国芯片再遭重击,继Intel后又一家芯片企业将被中国芯片超越
![[OS command injection] common OS command execution functions and OS command injection utilization examples and range experiments - based on DVWA range](/img/f2/458770fc74971bef23f96f87733ee5.png)
[OS command injection] common OS command execution functions and OS command injection utilization examples and range experiments - based on DVWA range
随机推荐
Redis master-slave replication, sentinel mode, cluster cluster
如何使用200行代码实现Scala的对象转换器
阅读别人的代码,是一种怎样的体验
Redis 主从复制、哨兵模式、Cluster集群
【业务安全03】密码找回业务安全以及接口参数账号修改实例(基于metinfov4.0平台)
[a complete human-computer interface program framework]
[daily 3 questions (3)] maximum number of balls in the box
Li Kou's 81st biweekly match
Completely solve the problem of Chinese garbled code in Web Engineering at one time
The second part of the travel notes of C (Part II) structural thinking: Zen is stable; all four advocate structure
为什么 Oracle 云客户必须在Oracle Cloud 季度更新发布后自行测试?
基于 xml 配置文件的入门级 SSM 框架整合
高效率取幂运算
PostgreSQL 15新版本特性解读(含直播问答、PPT资料汇总)
[an Xun cup 2019]attack
每日3题(2):检查二进制字符串字段
Awk concise tutorial
Make a ThreadLocal (source code) that everyone can understand
Gaode map IP positioning 2.0 backup
NAACL 2022 | TAMT:通过下游任务无关掩码训练搜索可迁移的BERT子网络