当前位置:网站首页>Piblup test report 1- pedigree based animal model
Piblup test report 1- pedigree based animal model
2022-06-27 15:00:00 【Analysis of breeding data】
PIBLUP Software github Address
PIBLUP
Download and install MKL
MKL yes Intel The library of , Need to register , Download and install
Download a software , decompression , Enter the path :
cd l_mkl_2018.3.222/
- 1.
Then type the following command to install
./install.sh
- 1.
install MPI
yum install mpich
- 1.
Animal models ( Pedigree )
Model
y i j k = s e x i + b i r t t h M o n j + b i r t h W e i g h t + a k + e i j k y_{ijk} = sex_i + birtthMon_j + birthWeight_ + a_k + e_{ijk} yijk=sexi+birtthMonj+birthWeight+ak+eijk
among ,
Fixed factor : sex, birthMon
Covariant quantity : birthWeight
Random factors : Additive effect (a)
Phenotypic data ( part )
Clothes : ID, birthMonth, Sex, birthWeight, weight1, weight2
The missing value is -99, weight1 Missing values , weight2 No missing value .
192243 2 2 27.50 147.35 147.35
192240 3 2 26.00 -99 124.91
192242 3 2 29.50 142.78 142.78
192246 3 1 30.30 143.43 143.43
192241 3 1 36.20 147.95 147.95
192251 3 2 36.00 154.93 154.93
192245 3 2 32.00 142.20 142.20
192247 3 1 31.00 148.84 148.84
192250 3 1 29.00 123.64 123.64
192249 3 2 24.80 140.96 140.96
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
Pedigree data ( part )
ID, Sire, Dam
192243 181 4007
192240 3980 3762
192242 3980 4010
192246 3980 4899
192241 847 3525
192251 4597 4204
192245 3920 3588
192247 3980 4341
192250 4597 4464
192249 3980 184
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
PIBLUP command
DATAFILE data2.txt # Data name
NTRAITS 1 # Single sex analysis
TRAITS 5 # The traits are in the fifth column
NEFFECTS 4 # share 4 Two effect values (ID, birthMonth, birthWeight, Sex)
NVAR 6 # Data is shared 6 Column
MISSING -99 # The missing value is -99
WEIGHT 0 # No, weight Variable
EFFECTS # In the effect value , The second, the third fixed factor , The fourth covariate ,
1 2/F 3/F 4/FR,0 1/R,1,1
COV 1 # G Matrix variance components 0.3
0.3
RCOV # R matrix Variance components 0.7
0.7
COVFILE 1 PED ped.txt 0 0 # A pedigree , No inbreeding , No genetic group
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
result (BLUP value )
1 1 2 2 0 43.9615
1 1 2 3 0 26.2066
1 1 2 4 0 15.3291
1 1 2 5 0 29.9283
1 1 2 6 0 29.0748
1 2 3 2 0 25.3714
1 2 3 1 0 22.4129
1 3 4 0 0 2.74602
1 4 1 192243 0 2.50189
1 4 1 192242 0 5.17704
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
asreml Comparison results
!WORKSPACE 100 !RENAME !outfolder !ARGS 1// !DOPART $1
Title: data2.
#192243 2 2 27.50 147.35 147.35
#192240 3 2 26.00 -99 124.91
#192242 3 2 29.50 142.78 142.78
#192246 3 1 30.30 143.43 143.43
#192241 3 1 36.20 147.95 147.95
ID !P # 192241
birth_mon !A
sex !A # 3
birth_we # 36.20
y1 !M -99 # 147.95
y2 # 147.95
# Check/Correct these field definitions.
ped.txt
data2.txt
!part 1
!sigmap
y1 ~ mu sex birth_mon birth_we, # Specify fixed model
!r ID 0.3 !GF # Specify random model
residual idv(units 0.7 !GF)
predict ID
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
Results comparison
library(data.table)
library(tidyverse)
piblup <- fread("1.par.sol.0")
dim(piblup)
head(piblup,10)
piblup1 <- piblup[9:351,c(4,6)]
head(piblup1)
asblup <- fread("data21/data2.sln")
head(asblup,10)
dim(asblup)
asblup1 <- asblup[10:352,c(2,3)]
head(asblup1)
head(piblup1)
names(piblup1) <- c("Level","pi-Effect")
re <- merge(piblup1,asblup1,"Level")
head(re)
names(re) <- c("ID","PIBLUP","ASReml-blup")
head(re)
cor(re$PIBLUP,re$`ASReml-blup`)
plot(re$PIBLUP,re$`ASReml-blup`)
head(re)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
Comparison results
> head(re)
ID PIBLUP ASReml-blup
1: 67 4.075890 4.0760
2: 131 1.477880 1.4780
3: 140 -0.625255 -0.6255
4: 181 5.004880 5.0090
5: 184 2.872590 2.8730
6: 188 4.016820 4.0200
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
The correlation coefficient
> cor(re$PIBLUP,re$`ASReml-blup`)
[1] 1
- 1.
- 2.
At two o 'clock
- 1, asreml in , Even if the initial value is not set , The result is the same , The variance components are determined by 0.3, rose 50, But heritability doesn't change .
- 2, weight1 and weight2, The results are basically the same . explain PIBLUP Can handle missing values .
- 3, The effect value of fixed factor is different , however BLUP Value consistent .
- 4, PIBLUP What is given is not predict means, It is BLUP value .
边栏推荐
- 图书管理系统
- PR second training notes
- ReentrantLock、ReentrantReadWriteLock、StampedLock
- Je veux acheter des produits à revenu fixe + mais je ne sais pas quels sont ses principaux investissements.
- Redis CacheClient
- 【高等数学】从法向量到第二类曲面积分
- 优雅的自定义 ThreadPoolExecutor 线程池
- Design and implementation of reading app based on Web Platform
- 固收+产品有什么特点?
- [WUSTCTF2020]girlfriend
猜你喜欢

LVI: feature extraction and sorting of lidar subsystem

阅读别人的代码,是一种怎样的体验

基于SSM的Web网页聊天室系统

Fundamentals of software engineering (I)

What is the London Silver code

Semaphore of thread synchronization

基于WEB平台的阅读APP设计与实现

Design and implementation of reading app based on Web Platform

Massive data! Second level analysis! Flink+doris build a real-time data warehouse scheme

Tsinghua & Shangtang & Shanghai AI & CUHK proposed Siamese image modeling, which has both linear probing and intensive prediction performance
随机推荐
Google tool splits by specified length
How QT sets some areas to be transparent in the background image
[business security-04] universal user name and universal password experiment
PostgreSQL 15新版本特性解读(含直播问答、PPT资料汇总)
[an Xun cup 2019]attack
老师能给我说一下固收+产品主要投资于哪些方面?
Leetcode 724. Find the central subscript of the array (yes, once)
Resolve activity startup - lifecycle Perspective
Sword finger offer II 039 Histogram maximum rectangular area monotonic stack
Redis master-slave replication, sentinel mode, cluster cluster
522. longest special sequence II / Sword finger offer II 101 Split equal sum subset
Talk about redis transactions
Top ten Devops best practices worthy of attention in 2022
Atomic operation class
Lei Jun lost another great general, and liweixing, the founding employee of Xiaomi No. 12, left his post. He once had porridge to create Xiaomi; Intel's $5.4 billion acquisition of tower semiconductor
Pychart installation and setup
At a time of oversupply of chips, China, the largest importer, continued to reduce imports, and the United States panicked
[microservices sentinel] hotspot rules | authorization rules | cluster flow control | machine list
Redis persistence
避孕套巨头过去两年销量下降40% ,下降原因是什么?