当前位置:网站首页>Piblup test report 1- pedigree based animal model
Piblup test report 1- pedigree based animal model
2022-06-27 15:00:00 【Analysis of breeding data】
PIBLUP Software github Address
PIBLUP
Download and install MKL
MKL yes Intel The library of , Need to register , Download and install
Download a software , decompression , Enter the path :
cd l_mkl_2018.3.222/
- 1.
Then type the following command to install
./install.sh
- 1.
install MPI
yum install mpich
- 1.
Animal models ( Pedigree )
Model
y i j k = s e x i + b i r t t h M o n j + b i r t h W e i g h t + a k + e i j k y_{ijk} = sex_i + birtthMon_j + birthWeight_ + a_k + e_{ijk} yijk=sexi+birtthMonj+birthWeight+ak+eijk
among ,
Fixed factor : sex, birthMon
Covariant quantity : birthWeight
Random factors : Additive effect (a)
Phenotypic data ( part )
Clothes : ID, birthMonth, Sex, birthWeight, weight1, weight2
The missing value is -99, weight1 Missing values , weight2 No missing value .
192243 2 2 27.50 147.35 147.35
192240 3 2 26.00 -99 124.91
192242 3 2 29.50 142.78 142.78
192246 3 1 30.30 143.43 143.43
192241 3 1 36.20 147.95 147.95
192251 3 2 36.00 154.93 154.93
192245 3 2 32.00 142.20 142.20
192247 3 1 31.00 148.84 148.84
192250 3 1 29.00 123.64 123.64
192249 3 2 24.80 140.96 140.96
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
Pedigree data ( part )
ID, Sire, Dam
192243 181 4007
192240 3980 3762
192242 3980 4010
192246 3980 4899
192241 847 3525
192251 4597 4204
192245 3920 3588
192247 3980 4341
192250 4597 4464
192249 3980 184
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
PIBLUP command
DATAFILE data2.txt # Data name
NTRAITS 1 # Single sex analysis
TRAITS 5 # The traits are in the fifth column
NEFFECTS 4 # share 4 Two effect values (ID, birthMonth, birthWeight, Sex)
NVAR 6 # Data is shared 6 Column
MISSING -99 # The missing value is -99
WEIGHT 0 # No, weight Variable
EFFECTS # In the effect value , The second, the third fixed factor , The fourth covariate ,
1 2/F 3/F 4/FR,0 1/R,1,1
COV 1 # G Matrix variance components 0.3
0.3
RCOV # R matrix Variance components 0.7
0.7
COVFILE 1 PED ped.txt 0 0 # A pedigree , No inbreeding , No genetic group
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
result (BLUP value )
1 1 2 2 0 43.9615
1 1 2 3 0 26.2066
1 1 2 4 0 15.3291
1 1 2 5 0 29.9283
1 1 2 6 0 29.0748
1 2 3 2 0 25.3714
1 2 3 1 0 22.4129
1 3 4 0 0 2.74602
1 4 1 192243 0 2.50189
1 4 1 192242 0 5.17704
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
asreml Comparison results
!WORKSPACE 100 !RENAME !outfolder !ARGS 1// !DOPART $1
Title: data2.
#192243 2 2 27.50 147.35 147.35
#192240 3 2 26.00 -99 124.91
#192242 3 2 29.50 142.78 142.78
#192246 3 1 30.30 143.43 143.43
#192241 3 1 36.20 147.95 147.95
ID !P # 192241
birth_mon !A
sex !A # 3
birth_we # 36.20
y1 !M -99 # 147.95
y2 # 147.95
# Check/Correct these field definitions.
ped.txt
data2.txt
!part 1
!sigmap
y1 ~ mu sex birth_mon birth_we, # Specify fixed model
!r ID 0.3 !GF # Specify random model
residual idv(units 0.7 !GF)
predict ID
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
Results comparison
library(data.table)
library(tidyverse)
piblup <- fread("1.par.sol.0")
dim(piblup)
head(piblup,10)
piblup1 <- piblup[9:351,c(4,6)]
head(piblup1)
asblup <- fread("data21/data2.sln")
head(asblup,10)
dim(asblup)
asblup1 <- asblup[10:352,c(2,3)]
head(asblup1)
head(piblup1)
names(piblup1) <- c("Level","pi-Effect")
re <- merge(piblup1,asblup1,"Level")
head(re)
names(re) <- c("ID","PIBLUP","ASReml-blup")
head(re)
cor(re$PIBLUP,re$`ASReml-blup`)
plot(re$PIBLUP,re$`ASReml-blup`)
head(re)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
Comparison results
> head(re)
ID PIBLUP ASReml-blup
1: 67 4.075890 4.0760
2: 131 1.477880 1.4780
3: 140 -0.625255 -0.6255
4: 181 5.004880 5.0090
5: 184 2.872590 2.8730
6: 188 4.016820 4.0200
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
The correlation coefficient
> cor(re$PIBLUP,re$`ASReml-blup`)
[1] 1
- 1.
- 2.
At two o 'clock
- 1, asreml in , Even if the initial value is not set , The result is the same , The variance components are determined by 0.3, rose 50, But heritability doesn't change .
- 2, weight1 and weight2, The results are basically the same . explain PIBLUP Can handle missing values .
- 3, The effect value of fixed factor is different , however BLUP Value consistent .
- 4, PIBLUP What is given is not predict means, It is BLUP value .
边栏推荐
- 易周金融 | Q1手机银行活跃用户规模6.5亿;理财子公司布局新兴领域
- volatile与JMM
- AutoCAD - line width setting
- [advanced MySQL] MTS master-slave synchronization principle and Practice Guide (7)
- CV领域一代宗师黄煦涛教授86岁冥诞,UIUC专设博士奖学金激励新锐
- Web chat room system based on SSM
- Sword finger offer II 039 Histogram maximum rectangular area monotonic stack
- Excuse me, is it cost-effective to insure sunshine Optimus Prime term life insurance No. 7? What are the advantages of this product?
- Maximum profit of stock (offer 63)
- How to select cross-border e-commerce multi merchant system
猜你喜欢

How is the London Silver point difference calculated

基于 Nebula Graph 构建百亿关系知识图谱实践
![[digital signal processing] discrete time signal (discrete time signal knowledge points | signal definition | signal classification | classification according to certainty | classification according t](/img/69/daff175c3c6a8971d631f9e681b114.jpg)
[digital signal processing] discrete time signal (discrete time signal knowledge points | signal definition | signal classification | classification according to certainty | classification according t

CAS之比较并交换
![[business security-02] business data security test and example of commodity order quantity tampering](/img/0f/c4d4dd72bed206bbe3e15e32456e2c.png)
[business security-02] business data security test and example of commodity order quantity tampering

Acwing game 57

External memory

All you want to know about large screen visualization is here
![[business security-04] universal user name and universal password experiment](/img/09/73d8356d00cefb6d1af086669f69ff.png)
[business security-04] universal user name and universal password experiment

ThreadLocal之强、弱、软、虚引用
随机推荐
优雅的自定义 ThreadPoolExecutor 线程池
Unity3d best practices: folder structure and source control
Leetcode 724. Find the central subscript of the array (yes, once)
Admixture usage document Cookbook
阅读别人的代码,是一种怎样的体验
Daily question 3 (2): check binary string field
Use GCC to generate an abstract syntax tree "ast" and dump it to Dot file and visualization
Référence forte, faible, douce et virtuelle de threadlocal
[digital signal processing] discrete time signal (discrete time signal knowledge points | signal definition | signal classification | classification according to certainty | classification according t
Privacy computing fat offline prediction
AQS Abstract queue synchronizer
HTTP Caching Protocol practice
原子操作类
直播app运营模式有哪几种,我们该选择什么样的模式?
海外仓知识科普
February 16, 2022 freetsdb compilation and operation
QT 如何在背景图中将部分区域设置为透明
Talk about redis transactions
易周金融 | Q1手机银行活跃用户规模6.5亿;理财子公司布局新兴领域
Volatile and JMM