当前位置:网站首页>一次SQL优化,数据库查询速度提升 60 倍
一次SQL优化,数据库查询速度提升 60 倍
2022-07-01 18:41:00 【澎湖Java架构师】
导语
sql的性能优化能够帮助我们优化数据查询时间,本篇主要向大家介绍了10000w的数据在sql优化后查询速度提升60倍的优化过程。
正文
有一张财务流水表,未分库分表,目前的数据量为9555695,分页查询使用到了limit,优化之前的查询耗时16 s 938 ms (execution: 16 s 831 ms, fetching: 107 ms),按照下文的方式调整SQL后,耗时347 ms (execution: 163 ms, fetching: 184 ms);
操作:
查询条件放到子查询中,子查询只查主键ID,然后使用子查询中确定的主键关联查询其他的属性字段;
原理:
1、减少回表操作;
2、可参考《阿里巴巴Java开发手册(泰山版)》第五章-MySQL数据库、(二)索引规约、第7条:
【推荐】利用延迟关联或者子查询优化超多分页场景。
说明:
MySQL并不是挑过offeset行,而是取offset+N行,然后返回放弃前offset行,返回N行,那当offset特别大的时候,效率就非常的底下,要么控制返回的总页数,要么对超过特定阈值的页数进行SQL改写。
正例:
先快速定位需要获取的id段,然后再关联:
SELECT a.* FROM 表1 a,(select id from 表1 where 条件 LIMIT 100000,20) b where a.id = b.id;
-- 优化前SQLSELECT 各种字段FROM `table_name`WHERE 各种条件LIMIT 0,10;
- 优化后SQLSELECT 各种字段FROM `table_name` main_taleRIGHT JOIN (SELECT 子查询只查主键FROM `table_name`WHERE 各种条件LIMIT 0,10;) temp_table ON temp_table.主键 = main_table.主键
一、前言
首先说明一下MySQL的版本:
mysql> select version();+-----------+| version() |+-----------+| 5.7.17 |+-----------+1 row in set (0.00 sec)
表结构:
mysql> desc test;+--------+---------------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+--------+---------------------+------+-----+---------+----------------+| id | bigint(20) unsigned | NO | PRI | NULL | auto_increment || val | int(10) unsigned | NO | MUL | 0 | || source | int(10) unsigned | NO | | 0 | |+--------+---------------------+------+-----+---------+----------------+3 rows in set (0.00 sec)
id为自增主键,val为非唯一索引。
灌入大量数据,共500万:
mysql> select count(*) from test;+----------+| count(*) |+----------+| 5242882 |+----------+1 row in set (4.25 sec)
我们知道,当limit offset rows中的offset很大时,会出现效率问题:
mysql> select * from test where val=4 limit 300000,5;+---------+-----+--------+| id | val | source |+---------+-----+--------+| 3327622 | 4 | 4 || 3327632 | 4 | 4 || 3327642 | 4 | 4 || 3327652 | 4 | 4 || 3327662 | 4 | 4 |+---------+-----+--------+5 rows in set (15.98 sec)
mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;+---------+-----+--------+---------+| id | val | source | id |+---------+-----+--------+---------+| 3327622 | 4 | 4 | 3327622 || 3327632 | 4 | 4 | 3327632 || 3327642 | 4 | 4 | 3327642 || 3327652 | 4 | 4 | 3327652 || 3327662 | 4 | 4 | 3327662 |+---------+-----+--------+---------+5 rows in set (0.38 sec)
为了达到相同的目的,我们一般会改写成如下语句:
时间相差很明显。
为什么会出现上面的结果?我们看一下select * from test where val=4 limit 300000,5;的查询过程:
- 查询到索引叶子节点数据。
- 根据叶子节点上的主键值去聚簇索引上查询需要的全部字段值。
类似于下面这张图:

像上面这样,需要查询300005次索引节点,查询300005次聚簇索引的数据,最后再将结果过滤掉前300000条,取出最后5条。MySQL耗费了大量随机I/O在查询聚簇索引的数据上,而有300000次随机I/O查询到的数据是不会出现在结果集当中的。
肯定会有人问:既然一开始是利用索引的,为什么不先沿着索引叶子节点查询到最后需要的5个节点,然后再去聚簇索引中查询实际数据。这样只需要5次随机I/O,类似于下面图片的过程:

其实我也想问这个问题。
证实
下面我们实际操作一下来证实上述的推论:
为了证实select * from test where val=4 limit 300000,5是扫描300005个索引节点和300005个聚簇索引上的数据节点,我们需要知道MySQL有没有办法统计在一个sql中通过索引节点查询数据节点的次数。我先试了Handler_read_*系列,很遗憾没有一个变量能满足条件。
我只能通过间接的方式来证实:
InnoDB中有buffer pool。里面存有最近访问过的数据页,包括数据页和索引页。所以我们需要运行两个sql,来比较buffer pool中的数据页的数量。预测结果是运行select * from test a inner join (select id from test where val=4 limit 300000,5); 之后,buffer pool中的数据页的数量远远少于select * from test where val=4 limit 300000,5;对应的数量,因为前一个sql只访问5次数据页,而后一个sql访问300005次数据页。
select * from test where val=4 limit 300000,5
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;Empty set (0.04 sec)
可以看出,目前buffer pool中没有关于test表的数据页。
mysql> select * from test where val=4 limit 300000,5;+---------+-----+--------+| id | val | source |+---------+-----+--------+| 3327622 | 4 | 4 || 3327632 | 4 | 4 || 3327642 | 4 | 4 || 3327652 | 4 | 4 || 3327662 | 4 | 4 |+---------+-----+--------+5 rows in set (26.19 sec)mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;+------------+----------+| index_name | count(*) |+------------+----------+| PRIMARY | 4098 || val | 208 |+------------+----------+2 rows in set (0.04 sec)
可以看出,此时buffer pool中关于test表有4098个数据页,208个索引页。
select * from test a inner join (select id from test where val=4 limit 300000,5) ;为了防止上次试验的影响,我们需要清空buffer pool,重启mysql。
mysqladmin shutdown/usr/local/bin/mysqld_safe &
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;Empty set (0.03 sec)
运行sql:
mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;+---------+-----+--------+---------+| id | val | source | id |+---------+-----+--------+---------+| 3327622 | 4 | 4 | 3327622 || 3327632 | 4 | 4 | 3327632 || 3327642 | 4 | 4 | 3327642 || 3327652 | 4 | 4 | 3327652 || 3327662 | 4 | 4 | 3327662 |+---------+-----+--------+---------+5 rows in set (0.09 sec)mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;+------------+----------+| index_name | count(*) |+------------+----------+| PRIMARY | 5 || val | 390 |+------------+----------+2 rows in set (0.03 sec)
我们可以看明显的看出两者的差别:第一个sql加载了4098个数据页到buffer pool,而第二个sql只加载了5个数据页到buffer pool。符合我们的预测。也证实了为什么第一个sql会慢:读取大量的无用数据行(300000),最后却抛弃掉。
而且这会造成一个问题:加载了很多热点不是很高的数据页到buffer pool,会造成buffer pool的污染,占用buffer pool的空间。
遇到的问题
为了在每次重启时确保清空buffer pool,我们需要关闭innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup,这两个选项能够控制数据库关闭时dump出buffer pool中的数据和在数据库开启时载入在磁盘上备份buffer pool的数据。、
边栏推荐
- Go语言自学系列 | go语言数据类型
- R language epidisplay package ordinal or. The display function obtains the summary statistical information of the ordered logistic regression model (the odds ratio and its confidence interval correspo
- 6款红黄黑榜摄像头评测:谁最安全?谁画质好?从此让你不再踩雷
- 实现一个Prometheus exporter
- Usage and underlying implementation principle of PriorityQueue
- The R language uses the tablestack function of epidisplay package to make statistical summary tables (descriptive statistics based on the grouping of target variables, hypothesis testing, etc.). If th
- 组队学习! 14天鸿蒙设备开发“学练考”实战营限时免费加入!
- Cache problems after app release
- 助力数字经济发展,夯实数字人才底座—数字人才大赛在昆成功举办
- Viewing the whole ecology of Tiktok from a macro perspective
猜你喜欢

11. Users, groups, and permissions (1)
![[AGC] how to solve the problem that the local display of event analysis data is inconsistent with that in AGC panel?](/img/66/674a06d8e45a31ae879b81554ef373.png)
[AGC] how to solve the problem that the local display of event analysis data is inconsistent with that in AGC panel?

Memo - about C # generating barcode

毕业季 | 华为专家亲授面试秘诀:如何拿到大厂高薪offer?

Huawei cloud experts explain the new features of gaussdb (for MySQL)
![[quick application] there are many words in the text component. How to solve the problem that the div style next to it will be stretched](/img/5c/b0030fd5fbc07eb94013f2699c2a04.png)
[quick application] there are many words in the text component. How to solve the problem that the div style next to it will be stretched

6月刊 | AntDB数据库参与编写《数据库发展研究报告》 亮相信创产业榜单

Openai video pre training (VPT): action learning based on watching unmarked online videos

Huawei game failed to initialize init with error code 907135000

Leetcode-128 longest continuous sequence
随机推荐
Leetcode-141 circular linked list
中英说明书丨人可溶性晚期糖基化终末产物受体(sRAGE)Elisa试剂盒
摄像头的MIPI接口、DVP接口和CSI接口[通俗易懂]
R language ggplot2 visualization: gganimate package transition_ Time function to create dynamic scatter animation (GIF), shadow_ The wake function configures the gradient falloff tailing effect of the
精益思想:来源,支柱,落地。看了这篇文章就懂了
Halcon图片标定,使得后续图片处理过后变成与模板图片一样
Stanford, salesforce|maskvit: masked vision pre training for video prediction
Why do independent website sellers start to do social media marketing? The original customer conversion rate can be improved so much!
Lumiprobe biomolecular quantification - qudye Protein Quantification Kit
Example explanation: move graph explorer to jupyterlab
R language uses follow up of epidisplay package Plot function visualizes the longitudinal follow-up map of multiple ID (case) monitoring indicators, and uses n.of The lines parameter specifies the num
华为联机对战服务玩家掉线重连案例总结
R language ggplot2 visualization: visualize the line graph and add customized Y-axis label information to the line graph using the labels function
ACM mm 2022 video understanding challenge video classification track champion autox team technology sharing
研究了11种实时聊天软件,我发现都具备这些功能…
实例讲解将Graph Explorer搬上JupyterLab
Li Kou daily question - Day 32 -1232 Dotted line
Livedata postvalue will "lose" data
Viewing technological changes through Huawei Corps (VI): smart highway
【快应用】text组件里的文字很多,旁边的div样式会被拉伸如何解决