当前位置:网站首页>The fourth back propagation back propagation
The fourth back propagation back propagation
2022-08-05 05:25:00 【A long way to go】
课堂练习
手动推导线性模型y=w*x,损失函数loss=(ŷ-y)²下,当数据集x=2,y=4的时候,反向传播的过程.

手动推导线性模型 y=w*x+b,损失函数loss=(ŷ-y)²下,当数据集x=1,y=2的时候,反向传播的过程.

线性模型y=w*x,损失函数loss=(ŷ-y)²下,当数据集x=2,y=4的时候,反向传播代码实现
注意:w.grad.data不会自动清0,Manual cleaning required0
代码如下:
import torch
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0]) # w的初值为1.0
w.requires_grad = True # 需要计算梯度
learning_rate=0.05 #学习率
def forward(x):
return x * w # w是一个Tensor
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) *(y_pred - y)
print("predict (before training)", 4, forward(4).item())
for epoch in range(100):
for x, y in zip(x_data, y_data):
l = loss(x, y) # l是一个张量,tensor主要是在建立计算图 forward, compute the loss
l.backward() # backward,compute grad for Tensor whose requires_grad set to True
print('\tgrad:', x, y, w.grad.item())
w.data = w.data - learning_rate * w.grad.data # 权重更新时,注意grad也是一个tensor
w.grad.data.zero_() # after update, remember set the grad to zero
print('progress:', epoch, l.item()) # 取出loss使用l.item,不要直接使用l(l是tensor会构建计算图)
print("predict (after training)", 4, forward(4).item())
运行结果:
predict (before training) 4 4.0
grad: 1.0 2.0 -2.0
grad: 2.0 4.0 -7.520000457763672
grad: 3.0 6.0 -12.859201431274414
progress: 0 4.593307018280029
grad: 1.0 2.0 -0.6572480201721191
grad: 2.0 4.0 -2.47125244140625
grad: 3.0 6.0 -4.225842475891113
progress: 1 0.4960484504699707
grad: 1.0 2.0 -0.2159874439239502
grad: 2.0 4.0 -0.8121128082275391
grad: 3.0 6.0 -1.388711929321289
progress: 2 0.05357002466917038
grad: 1.0 2.0 -0.07097864151000977
grad: 2.0 4.0 -0.2668800354003906
grad: 3.0 6.0 -0.45636463165283203
....................
progress: 13 9.094947017729282e-13
grad: 1.0 2.0 -4.76837158203125e-07
grad: 2.0 4.0 -1.9073486328125e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 14 9.094947017729282e-13
grad: 1.0 2.0 -2.384185791015625e-07
grad: 2.0 4.0 -9.5367431640625e-07
grad: 3.0 6.0 -2.86102294921875e-06
progress: 15 2.2737367544323206e-13
grad: 1.0 2.0 0.0
grad: 2.0 4.0 0.0
grad: 3.0 6.0 0.0
progress: 16 0.0
grad: 1.0 2.0 0.0
grad: 2.0 4.0 0.0
grad: 3.0 6.0 0.0
.....................
progress: 97 0.0
grad: 1.0 2.0 0.0
grad: 2.0 4.0 0.0
grad: 3.0 6.0 0.0
progress: 98 0.0
grad: 1.0 2.0 0.0
grad: 2.0 4.0 0.0
grad: 3.0 6.0 0.0
progress: 99 0.0
predict (after training) 4 8.0
边栏推荐
- 1.3 mysql batch insert data
- Detailed Explanation of Redis Sentinel Mode Configuration File
- 【过一下14】自习室的一天
- How does the Flutter TapGestureRecognizer work
- Convert the paper official seal in the form of a photo into an electronic official seal (no need to download ps)
- [Study Notes Dish Dog Learning C] Classic Written Exam Questions of Dynamic Memory Management
- Requests the library deployment and common function
- coppercam primer [6]
- Transformation 和 Action 常用算子
- 【解码工具】Bitcoin的一些在线工具
猜你喜欢
随机推荐
RDD和DataFrame和Dataset
HQL语句执行过程
Xiaobai, you big bulls are lightly abused
结构光三维重建(一)条纹结构光三维重建
02.01-----参数的引用的作用“ & ”
【过一下 17】pytorch 改写 keras
第5讲 使用pytorch实现线性回归
将照片形式的纸质公章转化为电子公章(不需要下载ps)
Flutter real machine running and simulator running
range函数作用
Reverse theory knowledge 4
2023年信息与通信工程国际会议(JCICE 2023)
Returned object not currently part of this pool
第二讲 Linear Model 线性模型
Opencv中,imag=cv2.cvtColor(imag,cv2.COLOR_BGR2GRAY) 报错:error:!_src.empty() in function ‘cv::cvtColor‘
学习总结week3_4类与对象
【过一下3】卷积&图像噪音&边缘&纹理
Redis - 13. Development Specifications
SQL(一) —— 增删改查
第三讲 Gradient Tutorial梯度下降与随机梯度下降



![coppercam入门手册[6]](/img/d3/a7d44aa19acfb18c5a8cacdc8176e9.png)




![[cesium] 3D Tileset model is loaded and associated with the model tree](/img/03/50b7394f33118c9ca1fbf31b737b1a.png)
