当前位置:网站首页>Lecture 2 Linear Model Linear Model
Lecture 2 Linear Model Linear Model
2022-08-05 05:23:00 【A long way to go】
参考资料
- 一句话解释numpy.meshgrid()
- matplotlib教程之——Custom profiles and drawing styles(rcParams和style)
- python中zip()函数的用法
- matplotlib之plot()详解
- matplotlib 3D绘图警告
课堂练习
实现线性模型y=wx的平面图
import numpy as np
import matplotlib.pyplot as plt
#保存数据集,The same index is a sample
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
#Feedforward of the model
def forward(x):
return x * w
#损失函数
def loss(x, y):
y_pred = forward(x) #According to the feedforward requirementy_hat
return (y_pred - y) ** 2 #计算损失
# 穷举法
w_list = [] #权重
mse_list = [] #The loss value corresponding to the weight
for w in np.arange(0.0, 4.1, 0.1):
print("w=", w)
l_sum = 0
#从x_data, y_data取出x_val, y_val
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
l_sum += loss_val
print('x_val==', x_val, 'y_val==',y_val, 'y_pred_val==',y_pred_val,'loss_val==', loss_val)
print('MSE=', l_sum / 3)
w_list.append(w)
mse_list.append(l_sum / 3)
#调用画图
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
pattern trace
课后练习
实现线性模型(y=wx+b)并输出loss的3D图像
There are several issues that need to be addressed here
1.w,b的取值
in previous class practice,只需要取一个w,因此可以用for循环取值.Correction is required in the exercises after classw,bTwo values for value operation,因此要使用meshgrid函数
2.Images cannot be displayed in Chinese
Add in front
from pylab import * mpl.rcParams[‘font.sans-serif’] = [‘SimHei’]
3.matplotlib 3D绘图警告
matplotlib 3D绘图警告
Code for homework exercises:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
#Here the function is set to y=3x+2
x_data = [1.0,2.0,3.0]
y_data = [5.0,8.0,11.0]
def forward(x):
return x * w + b
def loss(x,y):
y_pred = forward(x)
return (y_pred-y)*(y_pred-y)
mse_list = []
W=np.arange(0.0,4.1,0.1)
B=np.arange(0.0,4.1,0.1)
w,b=np.meshgrid(W,B)
# print("w==",w)
# print('b==',b)
l_sum = 0
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
print('x_val==', x_val,'\ny_val==', y_val,'\ny_pred_val==', y_pred_val, '\nloss_val==',loss_val)
l_sum += loss_val
fig = plt.figure()
ax = Axes3D(fig,auto_add_to_figure=False)
fig.add_axes(ax)
ax.plot_surface(w, b, l_sum/3)
ax.set_xlabel("权重 W")
ax.set_ylabel("偏置项 B")
ax.set_zlabel("损失值")
plt.show()
3D图:
边栏推荐
- Flutter real machine running and simulator running
- The role of DataContext in WPF
- Structured Light 3D Reconstruction (2) Line Structured Light 3D Reconstruction
- SQL(二) —— join窗口函数视图
- 【解码工具】Bitcoin的一些在线工具
- u-boot调试定位手段
- entry point injection
- LAB Semaphore Implementation Details
- 【过一下 17】pytorch 改写 keras
- Flex layout frog game clearance strategy
猜你喜欢
随机推荐
Reverse theory knowledge 4
ESP32 485 Illuminance
LAB Semaphore Implementation Details
Multi-threaded query results, add List collection
判断语句_switch与case
2023 International Conference on Information and Communication Engineering (JCICE 2023)
WPF中DataContext作用
2022 The 4th C.Easy Counting Problem (EGF+NTT)
第四讲 back propagation 反向传播
Flutter Learning 4 - Basic UI Components
Transformation 和 Action 常用算子
Dephi reverse tool Dede exports function name MAP and imports it into IDA
Flutter学习三-Flutter基本结构和原理
"PHP8 Beginner's Guide" A brief introduction to PHP
redis复制机制
uboot开启调试打印信息
2023年信息与通信工程国际会议(JCICE 2023)
Requests the library deployment and common function
Analysis of Mvi Architecture
人性的弱点









