当前位置:网站首页>Lecture 2 Linear Model Linear Model
Lecture 2 Linear Model Linear Model
2022-08-05 05:23:00 【A long way to go】
参考资料
- 一句话解释numpy.meshgrid()
- matplotlib教程之——Custom profiles and drawing styles(rcParams和style)
- python中zip()函数的用法
- matplotlib之plot()详解
- matplotlib 3D绘图警告
课堂练习
实现线性模型y=wx的平面图
import numpy as np
import matplotlib.pyplot as plt
#保存数据集,The same index is a sample
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
#Feedforward of the model
def forward(x):
return x * w
#损失函数
def loss(x, y):
y_pred = forward(x) #According to the feedforward requirementy_hat
return (y_pred - y) ** 2 #计算损失
# 穷举法
w_list = [] #权重
mse_list = [] #The loss value corresponding to the weight
for w in np.arange(0.0, 4.1, 0.1):
print("w=", w)
l_sum = 0
#从x_data, y_data取出x_val, y_val
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
l_sum += loss_val
print('x_val==', x_val, 'y_val==',y_val, 'y_pred_val==',y_pred_val,'loss_val==', loss_val)
print('MSE=', l_sum / 3)
w_list.append(w)
mse_list.append(l_sum / 3)
#调用画图
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
pattern trace
课后练习
实现线性模型(y=wx+b)并输出loss的3D图像
There are several issues that need to be addressed here
1.w,b的取值
in previous class practice,只需要取一个w,因此可以用for循环取值.Correction is required in the exercises after classw,bTwo values for value operation,因此要使用meshgrid函数
2.Images cannot be displayed in Chinese
Add in front
from pylab import * mpl.rcParams[‘font.sans-serif’] = [‘SimHei’]
3.matplotlib 3D绘图警告
matplotlib 3D绘图警告
Code for homework exercises:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
#Here the function is set to y=3x+2
x_data = [1.0,2.0,3.0]
y_data = [5.0,8.0,11.0]
def forward(x):
return x * w + b
def loss(x,y):
y_pred = forward(x)
return (y_pred-y)*(y_pred-y)
mse_list = []
W=np.arange(0.0,4.1,0.1)
B=np.arange(0.0,4.1,0.1)
w,b=np.meshgrid(W,B)
# print("w==",w)
# print('b==',b)
l_sum = 0
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
print('x_val==', x_val,'\ny_val==', y_val,'\ny_pred_val==', y_pred_val, '\nloss_val==',loss_val)
l_sum += loss_val
fig = plt.figure()
ax = Axes3D(fig,auto_add_to_figure=False)
fig.add_axes(ax)
ax.plot_surface(w, b, l_sum/3)
ax.set_xlabel("权重 W")
ax.set_ylabel("偏置项 B")
ax.set_zlabel("损失值")
plt.show()
3D图:
边栏推荐
- 【过一下3】卷积&图像噪音&边缘&纹理
- number_gets the specified number of decimals
- Opencv中,imag=cv2.cvtColor(imag,cv2.COLOR_BGR2GRAY) 报错:error:!_src.empty() in function ‘cv::cvtColor‘
- 【过一下12】整整一星期没记录
- uboot enable debug printing information
- 【读书】长期更新
- Analysis of Mvi Architecture
- uva1325
- After controlling the export file in MySQL, it becomes \N. Is there any solution?
- jvm three heap and stack
猜你喜欢

The underlying mechanism of the class

SQL(二) —— join窗口函数视图
![[cesium] element highlighting](/img/99/504ca9802db83eb33bc6d91b34fa84.png)
[cesium] element highlighting

多线程查询结果,添加List集合

span标签和p标签的区别

【过一下3】卷积&图像噪音&边缘&纹理

Qt produces 18 frames of Cupid to express his love, is it your Cupid!!!

Basic properties of binary tree + oj problem analysis

The role of DataContext in WPF

【过一下8】全连接神经网络 视频 笔记
随机推荐
[cesium] 3D Tileset model is loaded and associated with the model tree
Dephi逆向工具Dede导出函数名MAP导入到IDA中
软件设计 实验四 桥接模式实验
RL强化学习总结(一)
多线程查询结果,添加List集合
Dephi reverse tool Dede exports function name MAP and imports it into IDA
range函数作用
Returned object not currently part of this pool
Qt produces 18 frames of Cupid to express his love, is it your Cupid!!!
Flutter Learning 4 - Basic UI Components
2022杭电多校第一场01
Pycharm中使用pip安装第三方库安装失败:“Non-zero exit code (2)“的解决方法
数据库 单表查询
DOM及其应用
Flutter学习2-dart学习
淘宝账号如何快速提升到更高等级
Geek卸载工具
【过一下14】自习室的一天
[Software Exam System Architect] Software Architecture Design ③ Domain-Specific Software Architecture (DSSA)
「PHP8入门指南」PHP简明介绍