当前位置:网站首页>第四讲 back propagation 反向传播
第四讲 back propagation 反向传播
2022-08-05 05:13:00 【长路漫漫 大佬为伴】
课堂练习
手动推导线性模型y=w*x,损失函数loss=(ŷ-y)²下,当数据集x=2,y=4的时候,反向传播的过程。
手动推导线性模型 y=w*x+b,损失函数loss=(ŷ-y)²下,当数据集x=1,y=2的时候,反向传播的过程。
线性模型y=w*x,损失函数loss=(ŷ-y)²下,当数据集x=2,y=4的时候,反向传播代码实现
注意:w.grad.data不会自动清0,需要手动人工清0
代码如下:
import torch
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0]) # w的初值为1.0
w.requires_grad = True # 需要计算梯度
learning_rate=0.05 #学习率
def forward(x):
return x * w # w是一个Tensor
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) *(y_pred - y)
print("predict (before training)", 4, forward(4).item())
for epoch in range(100):
for x, y in zip(x_data, y_data):
l = loss(x, y) # l是一个张量,tensor主要是在建立计算图 forward, compute the loss
l.backward() # backward,compute grad for Tensor whose requires_grad set to True
print('\tgrad:', x, y, w.grad.item())
w.data = w.data - learning_rate * w.grad.data # 权重更新时,注意grad也是一个tensor
w.grad.data.zero_() # after update, remember set the grad to zero
print('progress:', epoch, l.item()) # 取出loss使用l.item,不要直接使用l(l是tensor会构建计算图)
print("predict (after training)", 4, forward(4).item())
运行结果:
predict (before training) 4 4.0
grad: 1.0 2.0 -2.0
grad: 2.0 4.0 -7.520000457763672
grad: 3.0 6.0 -12.859201431274414
progress: 0 4.593307018280029
grad: 1.0 2.0 -0.6572480201721191
grad: 2.0 4.0 -2.47125244140625
grad: 3.0 6.0 -4.225842475891113
progress: 1 0.4960484504699707
grad: 1.0 2.0 -0.2159874439239502
grad: 2.0 4.0 -0.8121128082275391
grad: 3.0 6.0 -1.388711929321289
progress: 2 0.05357002466917038
grad: 1.0 2.0 -0.07097864151000977
grad: 2.0 4.0 -0.2668800354003906
grad: 3.0 6.0 -0.45636463165283203
。。。。。。。。。。。。。。。。。。。。
progress: 13 9.094947017729282e-13
grad: 1.0 2.0 -4.76837158203125e-07
grad: 2.0 4.0 -1.9073486328125e-06
grad: 3.0 6.0 -5.7220458984375e-06
progress: 14 9.094947017729282e-13
grad: 1.0 2.0 -2.384185791015625e-07
grad: 2.0 4.0 -9.5367431640625e-07
grad: 3.0 6.0 -2.86102294921875e-06
progress: 15 2.2737367544323206e-13
grad: 1.0 2.0 0.0
grad: 2.0 4.0 0.0
grad: 3.0 6.0 0.0
progress: 16 0.0
grad: 1.0 2.0 0.0
grad: 2.0 4.0 0.0
grad: 3.0 6.0 0.0
.。。。。。。。。。。。。。。。。。。。。
progress: 97 0.0
grad: 1.0 2.0 0.0
grad: 2.0 4.0 0.0
grad: 3.0 6.0 0.0
progress: 98 0.0
grad: 1.0 2.0 0.0
grad: 2.0 4.0 0.0
grad: 3.0 6.0 0.0
progress: 99 0.0
predict (after training) 4 8.0
边栏推荐
- Requests the library deployment and common function
- 社区分享|腾讯海外游戏基于JumpServer构建游戏安全运营能力
- C#关于set()和get()方法的理解及使用
- Qt produces 18 frames of Cupid to express his love, is it your Cupid!!!
- "PHP8 Beginner's Guide" A brief introduction to PHP
- human weakness
- Flutter learning 2-dart learning
- C language - vernacular to understand the original code, inverse code and complement code
- CAP+BASE
- 【过一下11】随机森林和特征工程
猜你喜欢
随机推荐
Using QR codes to solve fixed asset management challenges
Dephi reverse tool Dede exports function name MAP and imports it into IDA
LeetCode: 1403. Minimum subsequence in non-increasing order [greedy]
社区分享|腾讯海外游戏基于JumpServer构建游戏安全运营能力
【过一下16】回顾一下七月
Mesos学习
OFDM Lecture 16 5 -Discrete Convolution, ISI and ICI on DMT/OFDM Systems
仪表板展示 | DataEase看中国:数据呈现中国资本市场
位运算符与逻辑运算符的区别
【过一下14】自习室的一天
Judgment statement _switch and case
Requests the library deployment and common function
「PHP8入门指南」PHP简明介绍
UVA10827
【Untitled】
1.3 mysql批量插入数据
服务器磁盘阵列
redis事务
Basic properties of binary tree + oj problem analysis
redis 缓存清除策略