当前位置:网站首页>STM32 ADC and DMA

STM32 ADC and DMA

2022-07-07 10:14:00 Xiao Li is clean and sanitary

STM32 ADC and DMA Simple summary

1. brief introduction

Use wildfire development board F429IGT6

ADC block diagram

image-20220702105713458

[ Failed to transfer the external chain picture , The origin station may have anti-theft chain mechanism , It is suggested to save the pictures and upload them directly (img-hcRJQP6A-1656898707918)(https://raw.githubusercontent.com/Master-4869/pictures/main/image-20220702105905661.png)]

ADC The main options are

  • Frequency division configuration of clock , It's decided ADC Clock speed of ,
  • Number of sampling clocks , A longer sampling time will be more accurate , The whole sampling period is the sampling time plus the conversion time , If you use 12 Bits need to be added 12 Conversion time of clocks , such 3 Sampling time plus 12 Conversion times , The whole sampling period is 15 A cycle
  • Whether the data is aligned left or right , Because the width of the data register is 16 Bit , The accuracy of sampling can only 12 position
  • The scanning mode is the same ADC Open multiple channels , Whether to switch each channel in turn
  • Continuous sampling yes ADC Whether to sample the conversion all the time or stop the conversion after triggering once
  • EOC Is the end of conversion flag
  • You can configure the ADC Is the trigger software trigger or hardware trigger
  • rank You can configure the conversion order of each channel
  • ADC It can be divided into rule conversion channel and injection conversion channel , Generally, the rule conversion channel is used

ADC It can also be configured as multi sampling mode , Altogether 3 individual ADC, You can take turns to sample and convert the same channel , So in the first ADC When converting, the second one can be followed by sampling , Can improve ADC Sampling rate .

[ Failed to transfer the external chain picture , The origin station may have anti-theft chain mechanism , It is suggested to save the pictures and upload them directly (img-2GFsNAoN-1656898707918)(https://raw.githubusercontent.com/Master-4869/pictures/main/image-20220702111226199.png)]

take 3 individual ADC The same channel selected , stay ADC1 Select triple sampling in the mode of . To configure DMA With ADC1 Mainly , other ADC No configuration required , Every ADC Turn on the cycle detection mode .

image-20220702111709462

image-20220702111817887

DMA The configuration of mainly includes

  • The direction of data transmission , Divided into memory to memory , Peripheral to memory , Memory to peripherals
  • Whether the transmission mode is circular transmission or only one transmission
  • The width of the transmitted data
  • Whether the address of peripheral register and memory should be incremented during transmission , Note that the size of the address incremented each time is the same as the set data width

If you use FIFO You can set burst mode, etc

2. Code

Use cubemx6.6.0

MDK5.34

2.1 Multichannel DMA

/* USER CODE BEGIN Header */
/** ****************************************************************************** * @file adc.c * @brief This file provides code for the configuration * of the ADC instances. ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "adc.h"

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

/* ADC1 init function */
void MX_ADC1_Init(void)
{
    

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {
    0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */

  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ENABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 3;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_13;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_4;
  sConfig.Rank = 2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_6;
  sConfig.Rank = 3;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */
  /* USER CODE END ADC1_Init 2 */

}

void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
{
    

  GPIO_InitTypeDef GPIO_InitStruct = {
    0};
  if(adcHandle->Instance==ADC1)
  {
    
  /* USER CODE BEGIN ADC1_MspInit 0 */

  /* USER CODE END ADC1_MspInit 0 */
    /* ADC1 clock enable */
    __HAL_RCC_ADC1_CLK_ENABLE();

    __HAL_RCC_GPIOC_CLK_ENABLE();
    __HAL_RCC_GPIOA_CLK_ENABLE();
    /**ADC1 GPIO Configuration PC3 ------> ADC1_IN13 PA4 ------> ADC1_IN4 PA6 ------> ADC1_IN6 */
    GPIO_InitStruct.Pin = GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

    GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_6;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    /* ADC1 DMA Init */
    /* ADC1 Init */
    hdma_adc1.Instance = DMA2_Stream0;
    hdma_adc1.Init.Channel = DMA_CHANNEL_0;
    hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
    hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_adc1.Init.Mode = DMA_CIRCULAR;
    hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
    hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
    if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
    {
    
      Error_Handler();
    }

    __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1);

  /* USER CODE BEGIN ADC1_MspInit 1 */
	
  /* USER CODE END ADC1_MspInit 1 */
  }
}

void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle)
{
    

  if(adcHandle->Instance==ADC1)
  {
    
  /* USER CODE BEGIN ADC1_MspDeInit 0 */

  /* USER CODE END ADC1_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_ADC1_CLK_DISABLE();

    /**ADC1 GPIO Configuration PC3 ------> ADC1_IN13 PA4 ------> ADC1_IN4 PA6 ------> ADC1_IN6 */
    HAL_GPIO_DeInit(GPIOC, GPIO_PIN_3);

    HAL_GPIO_DeInit(GPIOA, GPIO_PIN_4|GPIO_PIN_6);

    /* ADC1 DMA DeInit */
    HAL_DMA_DeInit(adcHandle->DMA_Handle);
  /* USER CODE BEGIN ADC1_MspDeInit 1 */

  /* USER CODE END ADC1_MspDeInit 1 */
  }
}

/* USER CODE BEGIN 1 */
//void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
//{
    
// ADC_Value = HAL_ADC_GetValue(hadc);

//}
/* USER CODE END 1 */

/* USER CODE BEGIN Header */
/** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
__IO uint16_t ADC_Value[300];
//extern UART_HandleTypeDef huart1;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/** * @brief The application entry point. * @retval int */
int main(void)
{
    
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */
	uint32_t chanel_value[3] = {
    0};
  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
	if (HAL_ADC_Start_DMA(&hadc1,(uint32_t *)&ADC_Value,300) == HAL_OK)
	{
    
		printf("dma Open successfully \n\r");
	
	}
	else
		printf("dma Failed to open \n\r");
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    
		chanel_value[0] = 0;
		chanel_value[1] = 0;
		chanel_value[2] = 0;
		for(int i = 0;i<300;)
		{
    
			chanel_value[0] += ADC_Value[i++];
			chanel_value[1] += ADC_Value[i++];
			chanel_value[2] += ADC_Value[i++];
		}
		chanel_value[0] = (float)chanel_value[0]/100;
		chanel_value[1] = (float)chanel_value[1]/100;
		chanel_value[2] = (float)chanel_value[2]/100;
		printf("\r\n------ ADC DMA ------\r\n\r\n");
    printf(" AD1 value = %1.3fV \r\n", chanel_value[0]*3.3f/4096);
    printf(" AD2 value = %1.3fV \r\n", chanel_value[1]*3.3f/4096);
		printf(" AD3 value = %1.3fV \r\n", chanel_value[2]*3.3f/4096);

		
		HAL_Delay(100);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/** * @brief System Clock Configuration * @retval None */
void SystemClock_Config(void)
{
    
  RCC_OscInitTypeDef RCC_OscInitStruct = {
    0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {
    0};

  /** Configure the main internal regulator output voltage */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 15;
  RCC_OscInitStruct.PLL.PLLN = 216;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Activate the Over-Drive mode */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/** * @brief This function is executed in case of error occurrence. * @retval None */
void Error_Handler(void)
{
    
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
    
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef USE_FULL_ASSERT
/** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */
void assert_failed(uint8_t *file, uint32_t line)
{
    
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

HAL_ADC_Start_DMA The function is to start ADC And use DMA To transmit data . The following data length should be consistent with the buffer length you set ,DMA It will automatically increment the address to store data , Incrementing the set length will automatically reset the address and restart writing data from the first address , Over write the previous data .

ADC A regular channel has only one data register , ADC_DR, In enabling DMA In the case of mode (ADC_CR2 In register DMA Location 1), Each completion rule channel group After a channel conversion , Will generate a DMA request . In this way, the converted data can be transferred from ADC_DR Register transfer To the target location selected by the software .

2.2 triple ADC

/* USER CODE BEGIN Header */
/** ****************************************************************************** * @file adc.c * @brief This file provides code for the configuration * of the ADC instances. ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "adc.h"

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
ADC_HandleTypeDef hadc3;
DMA_HandleTypeDef hdma_adc1;

/* ADC1 init function */
void MX_ADC1_Init(void)
{
    

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_MultiModeTypeDef multimode = {
    0};
  ADC_ChannelConfTypeDef sConfig = {
    0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */

  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = DISABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure the ADC multi-mode */
  multimode.Mode = ADC_TRIPLEMODE_INTERL;
  multimode.DMAAccessMode = ADC_DMAACCESSMODE_2;
  multimode.TwoSamplingDelay = ADC_TWOSAMPLINGDELAY_5CYCLES;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_13;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}
/* ADC2 init function */
void MX_ADC2_Init(void)
{
    

  /* USER CODE BEGIN ADC2_Init 0 */

  /* USER CODE END ADC2_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {
    0};

  /* USER CODE BEGIN ADC2_Init 1 */

  /* USER CODE END ADC2_Init 1 */

  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */
  hadc2.Instance = ADC2;
  hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc2.Init.Resolution = ADC_RESOLUTION_12B;
  hadc2.Init.ScanConvMode = DISABLE;
  hadc2.Init.ContinuousConvMode = ENABLE;
  hadc2.Init.DiscontinuousConvMode = DISABLE;
  hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc2.Init.NbrOfConversion = 1;
  hadc2.Init.DMAContinuousRequests = DISABLE;
  hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc2) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_13;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }
  /* USER CODE BEGIN ADC2_Init 2 */

  /* USER CODE END ADC2_Init 2 */

}
/* ADC3 init function */
void MX_ADC3_Init(void)
{
    

  /* USER CODE BEGIN ADC3_Init 0 */

  /* USER CODE END ADC3_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {
    0};

  /* USER CODE BEGIN ADC3_Init 1 */

  /* USER CODE END ADC3_Init 1 */

  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */
  hadc3.Instance = ADC3;
  hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc3.Init.Resolution = ADC_RESOLUTION_12B;
  hadc3.Init.ScanConvMode = DISABLE;
  hadc3.Init.ContinuousConvMode = ENABLE;
  hadc3.Init.DiscontinuousConvMode = DISABLE;
  hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc3.Init.NbrOfConversion = 1;
  hadc3.Init.DMAContinuousRequests = DISABLE;
  hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc3) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */
  sConfig.Channel = ADC_CHANNEL_13;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
  {
    
    Error_Handler();
  }
  /* USER CODE BEGIN ADC3_Init 2 */

  /* USER CODE END ADC3_Init 2 */

}

void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
{
    

  GPIO_InitTypeDef GPIO_InitStruct = {
    0};
  if(adcHandle->Instance==ADC1)
  {
    
  /* USER CODE BEGIN ADC1_MspInit 0 */

  /* USER CODE END ADC1_MspInit 0 */
    /* ADC1 clock enable */
    __HAL_RCC_ADC1_CLK_ENABLE();

    __HAL_RCC_GPIOC_CLK_ENABLE();
    /**ADC1 GPIO Configuration PC3 ------> ADC1_IN13 */
    GPIO_InitStruct.Pin = GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

    /* ADC1 DMA Init */
    /* ADC1 Init */
    hdma_adc1.Instance = DMA2_Stream0;
    hdma_adc1.Init.Channel = DMA_CHANNEL_0;
    hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
    hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
    hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
    hdma_adc1.Init.Mode = DMA_CIRCULAR;
    hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
    hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
    if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
    {
    
      Error_Handler();
    }

    __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1);

  /* USER CODE BEGIN ADC1_MspInit 1 */

  /* USER CODE END ADC1_MspInit 1 */
  }
  else if(adcHandle->Instance==ADC2)
  {
    
  /* USER CODE BEGIN ADC2_MspInit 0 */

  /* USER CODE END ADC2_MspInit 0 */
    /* ADC2 clock enable */
    __HAL_RCC_ADC2_CLK_ENABLE();

    __HAL_RCC_GPIOC_CLK_ENABLE();
    /**ADC2 GPIO Configuration PC3 ------> ADC2_IN13 */
    GPIO_InitStruct.Pin = GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /* USER CODE BEGIN ADC2_MspInit 1 */

  /* USER CODE END ADC2_MspInit 1 */
  }
  else if(adcHandle->Instance==ADC3)
  {
    
  /* USER CODE BEGIN ADC3_MspInit 0 */

  /* USER CODE END ADC3_MspInit 0 */
    /* ADC3 clock enable */
    __HAL_RCC_ADC3_CLK_ENABLE();

    __HAL_RCC_GPIOC_CLK_ENABLE();
    /**ADC3 GPIO Configuration PC3 ------> ADC3_IN13 */
    GPIO_InitStruct.Pin = GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /* USER CODE BEGIN ADC3_MspInit 1 */

  /* USER CODE END ADC3_MspInit 1 */
  }
}

void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle)
{
    

  if(adcHandle->Instance==ADC1)
  {
    
  /* USER CODE BEGIN ADC1_MspDeInit 0 */

  /* USER CODE END ADC1_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_ADC1_CLK_DISABLE();

    /**ADC1 GPIO Configuration PC3 ------> ADC1_IN13 */
    HAL_GPIO_DeInit(GPIOC, GPIO_PIN_3);

    /* ADC1 DMA DeInit */
    HAL_DMA_DeInit(adcHandle->DMA_Handle);
  /* USER CODE BEGIN ADC1_MspDeInit 1 */

  /* USER CODE END ADC1_MspDeInit 1 */
  }
  else if(adcHandle->Instance==ADC2)
  {
    
  /* USER CODE BEGIN ADC2_MspDeInit 0 */

  /* USER CODE END ADC2_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_ADC2_CLK_DISABLE();

    /**ADC2 GPIO Configuration PC3 ------> ADC2_IN13 */
    HAL_GPIO_DeInit(GPIOC, GPIO_PIN_3);

  /* USER CODE BEGIN ADC2_MspDeInit 1 */

  /* USER CODE END ADC2_MspDeInit 1 */
  }
  else if(adcHandle->Instance==ADC3)
  {
    
  /* USER CODE BEGIN ADC3_MspDeInit 0 */

  /* USER CODE END ADC3_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_ADC3_CLK_DISABLE();

    /**ADC3 GPIO Configuration PC3 ------> ADC3_IN13 */
    HAL_GPIO_DeInit(GPIOC, GPIO_PIN_3);

  /* USER CODE BEGIN ADC3_MspDeInit 1 */

  /* USER CODE END ADC3_MspDeInit 1 */
  }
}

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* USER CODE BEGIN Header */
/** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
uint32_t adc_buffer[300] = {
    0};
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/** * @brief The application entry point. * @retval int */
int main(void)
{
    
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_ADC2_Init();
  MX_ADC3_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
	printf("\r\n------ ADC DMA ------\r\n\r\n");
	HAL_ADC_Start(&hadc3);
	HAL_ADC_Start(&hadc2);
	HAL_ADCEx_MultiModeStart_DMA(&hadc1,adc_buffer,300);
	
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    
    /* USER CODE END WHILE */
		printf("\r\n------ ADC DMA ------\r\n\r\n");
		printf(" AD1 value = %1.3fV \r\n", (uint16_t)adc_buffer[0]*3.3f/4096);
		printf(" AD1 value = %1.3fV \r\n", (adc_buffer[0]>>16)*3.3f/4096);
		printf(" AD1 value = %1.3fV \r\n", (uint16_t)adc_buffer[1]*3.3f/4096);
		printf(" AD1 value = %1.3fV \r\n", (adc_buffer[1]>>16)*3.3f/4096);
		HAL_Delay(100);

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/** * @brief System Clock Configuration * @retval None */
void SystemClock_Config(void)
{
    
  RCC_OscInitTypeDef RCC_OscInitStruct = {
    0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {
    0};

  /** Configure the main internal regulator output voltage */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 15;
  RCC_OscInitStruct.PLL.PLLN = 216;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Activate the Over-Drive mode */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/** * @brief This function is executed in case of error occurrence. * @retval None */
void Error_Handler(void)
{
    
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
    
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef USE_FULL_ASSERT
/** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */
void assert_failed(uint8_t *file, uint32_t line)
{
    
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

Note that when starting ADC You should open it in the following order ,DMA It's using ADC1 Of

	HAL_ADC_Start(&hadc3);
	HAL_ADC_Start(&hadc2);
	HAL_ADCEx_MultiModeStart_DMA(&hadc1,adc_buffer,300);

Multiple in number ADC In mode , Available in the multimode data register (ADC_CDR) Read the converted data in . It can be in multi-mode State register (ADC_CSR) Read the status bit in

In triple ADC In mode ,ADC General data register (ADC_CDR) contain ADC1、ADC2 and ADC3 Rules for converting data . Use all in the selected storage order 32 Register bits .

In the double ADC In mode ,ADC General data register (ADC_CDR) contain ADC1 and ADC2 Rules for converting data . Use all 32 Register bits .

[ Failed to transfer the external chain picture , The origin station may have anti-theft chain mechanism , It is suggested to save the pictures and upload them directly (img-segkD2js-1656898707919)(https://raw.githubusercontent.com/Master-4869/pictures/main/image-20220702114556931.png)]

image-20220702114610061

3. result

Multichannel ADC

11111

multiple ADC

22222

Project files have been uploaded .

Engineering documents

原网站

版权声明
本文为[Xiao Li is clean and sanitary]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/188/202207070748125116.html