当前位置:网站首页>Build your own application based on Google's open source tensorflow object detection API video object recognition system (IV)
Build your own application based on Google's open source tensorflow object detection API video object recognition system (IV)
2022-07-06 20:28:00 【gmHappy】
The main content of this chapter is to use mqtt、 Multithreading 、 The queue implementation model is loaded at one time , Batch image recognition and classification function
The directory structure is as follows :
mqtt Connection and multithreaded queue management
# -*- coding:utf8 -*-
import paho.mqtt.client as mqtt
from multiprocessing import Process, Queue
import images_detect
MQTTHOST = "192.168.3.202"
MQTTPORT = 1883
mqttClient = mqtt.Client()
q = Queue()
# Connect MQTT The server
def on_mqtt_connect():
mqttClient.connect(MQTTHOST, MQTTPORT, 60)
mqttClient.loop_start()
# Message handler
def on_message_come(mqttClient, userdata, msg):
q.put(msg.payload.decode("utf-8")) # Put in queue
print(" Generate news ", msg.payload.decode("utf-8"))
def consumer(q, pid):
print(" Start the process of consumption sequence ", pid)
# Publishing messages in multiple processes requires reinitialization mqttClient
ImagesDetect = images_detect.ImagesDetect()
ImagesDetect.detect(q)
# subscribe News subscription
def on_subscribe():
mqttClient.subscribe("test", 1) # The theme is "test"
mqttClient.on_message = on_message_come # Message arrival processing function
# publish News release
def on_publish(topic, msg, qos):
mqttClient.publish(topic, msg, qos);
def main():
on_mqtt_connect()
on_subscribe()
for i in range(1, 3):
c1 = Process(target=consumer, args=(q, i))
c1.start()
while True:
pass
if __name__ == '__main__':
main()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
Image recognition
images_detect.py
# coding: utf-8
import numpy as np
import os
import sys
import tarfile
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
import cv2
import decimal
import MyUtil
context = decimal.getcontext()
context.rounding = decimal.ROUND_05UP
class ImagesDetect():
def __init__(self):
sys.path.append("..")
MODEL_NAME = 'faster_rcnn_inception_v2_coco_2018_01_28'
MODEL_FILE = MODEL_NAME + '.tar.gz'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
# ## Load a (frozen) Tensorflow model into memory.
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# ## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
self.category_index = label_map_util.create_category_index(categories)
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents an object detected
self.boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents the reliability of the detected object .
self.scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
self.classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')
def detect(self, q):
with self.detection_graph.as_default():
config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.2
with tf.Session(graph=self.detection_graph, config=config) as sess:
while True:
img_src = q.get()
print('------------start------------' + MyUtil.get_time_stamp())
image_np = cv2.imread(img_src)
# Expand dimensions , Expected for model : [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Perform detection task .
(boxes, scores, classes, num_detections) = sess.run(
[self.boxes, self.scores, self.classes, self.num_detections],
feed_dict={self.image_tensor: image_np_expanded})
# Visualization of test results
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
self.category_index,
use_normalized_coordinates=True,
line_thickness=8)
print('------------end------------' + MyUtil.get_time_stamp())
# cv2.imshow('object detection', cv2.resize(image_np, (800, 600)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
MyUtil.py
import time
def get_time_stamp():
ct = time.time()
local_time = time.localtime(ct)
data_head = time.strftime("%Y-%m-%d %H:%M:%S", local_time)
data_secs = (ct - int(ct)) * 1000
time_stamp = "%s.%03d" % (data_head, data_secs)
return time_stamp
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
effect :
边栏推荐
猜你喜欢
[DIY]如何制作一款个性的收音机
Boder radius has four values, and boder radius exceeds four values
How to upgrade high value-added links in the textile and clothing industry? APS to help
棋盘左上角到右下角方案数(2)
【云原生与5G】微服务加持5G核心网
【计网】第三章 数据链路层(3)信道划分介质访问控制
Learn to punch in Web
Tencent T2 Daniel explained in person and doubled his job hopping salary
What programming do children learn?
Tencent byte Alibaba Xiaomi jd.com offer got a soft hand, and the teacher said it was great
随机推荐
I've seen many tutorials, but I still can't write a program well. How can I break it?
Discussion on beegfs high availability mode
5. 无线体内纳米网:十大“可行吗?”问题
Web security - payload
Number of schemes from the upper left corner to the lower right corner of the chessboard (2)
Tencent Android development interview, basic knowledge of Android Development
【GET-4】
Quel genre de programmation les enfants apprennent - ils?
02 basic introduction - data package expansion
5. Wireless in vivo nano network: top ten "feasible?" problem
【每周一坑】输出三角形
棋盘左上角到右下角方案数(2)
Basic knowledge of lists
HMS core machine learning service creates a new "sound" state of simultaneous interpreting translation, and AI makes international exchanges smoother
2022 nurse (primary) examination questions and new nurse (primary) examination questions
[weekly pit] positive integer factorization prime factor + [solution] calculate the sum of prime numbers within 100
微信小程序常用集合
解剖生理学复习题·VIII血液系统
【计网】第三章 数据链路层(4)局域网、以太网、无线局域网、VLAN
Enumeration gets values based on parameters