当前位置:网站首页>Implementation of ICEEMDAN Decomposition Code in MATLAB

Implementation of ICEEMDAN Decomposition Code in MATLAB

2022-08-04 07:02:00 Doraemon 001

0, Preface

This article explains the ICEEMDAN decomposition method and shares the code.

1. Implementation of ICEEMDAN

The following is the main function part:

ecg=data;%data is a signal data to be decomposed, please replace it with your own data%% parameter settingsNstd = 0.2;nr = 1;MaxIter = 5000;%%ICEEMDAN[modes]=iceemdan(ecg,Nstd,NR,MaxIter,1);%iceemdanmodes=modes';t=1:length(ecg);[a b]=size(modes);figure;subplot(a+1,1,1);plot(t,ecg);% the ECG signal is in the first row of the subplotylabel('original')set(gca,'xtick',[])title('ICEEMDAN')axis tight;for i=2:asubplot(a+1,1,i);plot(t,modes(i-1,:));ylabel (['IMF ' num2str(i-1)]);set(gca,'xtick',[])xlim([1 length(ecg)])endsubplot(a+1,1,a+1)plot(t,modes(a,:))ylabel(['IMF ' num2str(a)])xlim([1 length(ecg)])xlabel('sample point')

The code of the sub-function iceemdan:

function [modes]=iceemdan(x,Nstd,NR,MaxIter,SNRFlag)% The current is an improved version, introduced in:%[1] Colominas MA, Schlotthauer G, Torres ME. "Improve complete ensemble EMD: A suitable tool for biomedical signal processing"% Biomedical Signal Processing and Control vol. 14 pp. 19-29 (2014)%The CEEMDAN algorithm was first introduced at ICASSP 2011, Prague, Czech Republic%The authors will be thankful if the users of this code reference the work%where the algorithm was first presented:%[2] Torres ME, Colominas MA, Schlotthauer G, Flandrin P. "A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise"% Proc. 36th Int. Conf. on Acoustics, Speech and Signa Processing ICASSP 2011 (May 22-27, Prague, Czech Republic)%Author: Marcelo A. Colominas%contact: [email protected]%Last version: 25 feb 2015desvio_x=std(x);x=x/desvio_x;[a,b]=size(x);temp=zeros(b,1);modes=zeros(b,1);aux=zeros(a,b);for i=1:NRwhite_noise{i}=randn(size(x));%creates the noise realizationsend;for i=1:NRmodes_white_noise{i}=emd(white_noise{i},'display',0);%calculates the modes of white gaussian noiseend;% save interval modes_white_noisefor i=1:NR %calculates the first modexi=x+Nstd*modes_white_noise{i}(:,1)'/std(modes_white_noise{i}(:,1));[temp, o, it]=emd(xi,'MaxNumIMF',1,'SiftMaxIterations',MaxIter,'display',0);aux=aux+(xi-temp')/NR;% nnnnnnnnnnnnnnnnJub local envelopeend;modes= (x-aux)'; %saves the first modemedias = aux; %r1k=1;aux=zeros(a,b);es_imf = min(size(emd(medias(1,:),'SiftMaxIterations',MaxIter,'display',0)));while es_imf>1 %calculates the rest of the modesfor i=1:NRtamanio=size(modes_white_noise{i});if tamanio(2)>=k+1noise=modes_white_noise{i}(:,k+1);if SNRFlag == 2noise=noise/std(noise); %adjust the std of the noiseend;noise=Nstd*noise;try[temp,o,it]=emd(medias(1,:)+std(medias(1,:))*noise','MaxNumIMF',1,'SiftMaxIterations',MaxIter,'display',0);catchtemp=emd(medias(1,:)+std(medias(1,:))*noise','MaxNumIMF',1,'SiftMaxIterations',MaxIter,'display',0);end;elsetry[temp, o, it]=emd(medias(1,:),'MaxNumIMF',1,'SiftMaxIterations',MaxIter,'display',0);catchtemp=emd(medias(1,:),'MaxNumIMF',1,'SiftMaxIterations',MaxIter,'display',0);end;end;aux=aux+(medias(1,:)+std(medias(1,:))*noise'-temp')/NR;% r2 r3 r...end;modes=[modes (medias(1,:)-aux)'];medias = aux;aux=zeros(size(x));k=k+1;es_imf = min(size(emd(medias(1,:),'SiftMaxIterations',MaxIter,'display',0)));end;modes = [modes (medias(1,:))'];modes=modes*desvio_x;

The above code can be run directly to achieve signal decomposition.

原网站

版权声明
本文为[Doraemon 001]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208040527372605.html