当前位置:网站首页>There are n steps in total, and you can go up to 1 or 2 steps each time. How many ways are there?

There are n steps in total, and you can go up to 1 or 2 steps each time. How many ways are there?

2022-08-04 02:09:00 Xxhu1997

CSDN每日一练题目

  • 2022-08-02日CSDNPractice one question of medium difficulty every day.
  • 题目要求 1 <= N <= 50,当输入NThe result is calculated within a second.
  • 题目类型:递归、循环
    在这里插入图片描述

answering process

测试示例:

  • n = 3 , 正确结果为 3
  • n = 4 , 正确结果为 5
  • n = 5 , 正确结果为 8
  • n = 6 , 正确结果为13

1、Ordinary recursion

  • The idea was not very clear at first,就随便写写,Write a recursion,但是当N较大时,计算效率极低.

代码

class Main {
    
    public static void main(String[] args) {
    
        System.out.println(System.currentTimeMillis());
        int n = 50;
        int result = solution(n);

        System.out.println(result);
        System.out.println(System.currentTimeMillis());

    }

    public static int solution(int n) {
    
        int result = 0;

        if (n >= 1 && n <= 2){
    
            result = n;
        } else {
    
            result = solution(n -1) + solution(n - 2);
        }

        return result;
    }

}

结果

  • because of the long computation time,Officials have not stated whether the calculation results are correct,Just stating the timeout.

2、递归优化

  • The first type of recursion is very inefficient,So think about optimizing recursion.
  • 优化思路:Because you can only go1级或2级台阶,Then you can go first1级和2The total type of collocation,举例说明:如共5级台阶,Then you can be sure1和2There are matching methods:5次1级、3次1级和1次2级、1次1级和2次2级.Regardless of the first step1级或2级,There are three basic combinations,Determine these three combinations first,Then you can sort each combination.

代码

class Main {
    
    public static void main(String[] args) {
    
        System.out.println(System.currentTimeMillis());
        int n = 20;
        int result = solution(n);

        System.out.println(result);
        System.out.println(System.currentTimeMillis());

    }

    public static int solution(int n) {
    
        int result = 0;
        for (int oneNum = n; oneNum >= 0; oneNum--) {
    
            if ((n - oneNum) % 2 == 0) {
    
                result += countNum(oneNum, (n - oneNum) / 2);
            }
        }
        return result;
    }

    public static int countNum(int oneNum, int twoNum) {
    
        if (oneNum == 0 || twoNum == 0) {
    
            return 1;
        } else if (oneNum == 1 || twoNum == 1) {
    
            return oneNum + twoNum;
        }
        int total = 0;

        for (int i = 0; i <= oneNum; i++) {
    
            if (oneNum - i == 0) {
    
                total += 1;
            } else {
    
                total += countNum(oneNum - i, twoNum - 1);
            }
        }

        return total;
    }
}

结果

  • Although optimization has a certain effect,但当NIt's still slow when larger,So this way of writing is not the answer.

3、Use permutation formulas、并优化

  • 在第二种写法时,递归的时候,I already thought it was a permutation and combination problem I learned in high school,Because I can't remember what the formula is,did not practice.但结果仍然不对,Then we can only think about whether it is feasible to use the permutation and combination formula of high school.

  • 排列公式:The permutation formula does not apply in this question

  • 在这里插入图片描述

  • 组合公式:Among them, the factorial formula is more suitable to use,Convert to this topic,公式中n就是走1Levels and walks2The sum of the number of stages,m可以是1level or2number of stages,结果相同.

  • 在这里插入图片描述

Basic permutations

class Main {
    
    public static void main(String[] args) {
    
        System.out.println(System.currentTimeMillis());
        int n = 20;
        int result = solution(n);

        System.out.println(result);
        System.out.println(System.currentTimeMillis());

    }

    public static int solution(int n) {
    
        int result = 0;
        for (int oneNum = n; oneNum >= 0; oneNum--) {
    
            if ((n - oneNum) % 2 == 0) {
    
                result += countNum(oneNum, (n - oneNum) / 2);
            }
        }
        return result;
    }
    public static int countNum(int oneNum, int twoNum) {
    
        if (oneNum == 0 || twoNum == 0) {
    
            return 1;
        } else if (oneNum == 1 || twoNum == 1) {
    
            return oneNum + twoNum;
        }
        int total = 0;
        int top = 1;
        for (int i = oneNum + twoNum; i > 1; i--) {
    
            top *= i;
        }

        int down = 1;
        for (int i = oneNum; i > 1; i--) {
    
            down *= i;
        }
        for (int i = twoNum; i > 1; i--) {
    
            down *= i;
        }
        total = top / down;

        return total;
    }

}

结果

  • Test with this code,当N过大时,The calculation cannot be performed properly,会报错,原因是当N过大时,The number after factorial is too large,Out of range for type storage number,causes the numbers to become 0,Ultimately resulting in a denominator of 0计算出错.

Optimize formula calculation logic

  • 优化思路:
  • 1、Reduce the formula first,Decrease the factorial value
  • 2、mChoose a lower number,如果走1The number of steps is small,就将1The number of steps is set to m,反之则是2number of steps.
class Main {
    
    public static void main(String[] args) {
    
        System.out.println(System.currentTimeMillis());
        int n = 20;
        int result = solution(n);

        System.out.println(result);
        System.out.println(System.currentTimeMillis());

    }

    public static int solution(int n) {
    
        int result = 0;
        for (int oneNum = n; oneNum >= 0; oneNum--) {
    
            if ((n - oneNum) % 2 == 0) {
    
                result += countNum(oneNum, (n - oneNum) / 2);
            }
        }
        return result;
    }

    public static int countNum(int oneNum, int twoNum) {
    
        if (oneNum == 0 || twoNum == 0) {
    
            return 1;
        } else if (oneNum == 1 || twoNum == 1) {
    
            return oneNum + twoNum;
        }
        int total = 0;
        int topMin = 1;
        int downMax = 1;
        if (oneNum > twoNum) {
    
            topMin = oneNum;
            downMax = twoNum;
        } else {
    
            topMin = twoNum;
            downMax = oneNum;
        }
        int top = 1;
        for (int i = oneNum + twoNum; i > topMin; i--) {
    
            top *= i;
        }

        int down = 1;
        for (int i = downMax; i > 1; i--) {
    
            down *= i;
        }
        total = top / down;

        return total;
    }

}

总结

  • 结果:很不幸,I did not seriously recall the permutation and combination formula that day,As a result, this scheme after optimization is not written,In the end no results were submitted,Not sure if the final answer is correct.
  • 感悟:
  • 1、Many problems can be solved in middle school and high school,Too bad you forgot.
  • 2、Don't give up on some issues,the chacha,能节省很多时间.
  • 3、Algorithms are hard.-.-
原网站

版权声明
本文为[Xxhu1997]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208040203258991.html